Skip to main content

Abstract

Different methods of representing animal growth are possible and are defined for different animal categories. In this paper, weight measuring of female dairy cattle will be modelled by several nonlinear models. The most commonly used methods for describing the growth of animals are: Gompertz function, logistic function, Schmalhausen function, Brody function, Weibull function, Wood function and Von Bertalanffy function. Measured weight values and estimated parameters of growth curves will be analyzed using regression analysis methods. We will work with the weight measurements of 10 calves under 25 months of age from cowsheds in village Záluží in the Czech Republic. A comparison of several growth curves will be done. The suitability of individual models will be evaluated not only by the index of determination, but also by the intrinsic curvature according to Bates and Watts. This curvature affects the size of the linearization areas in which initial solution will ensure convergence of nonlinear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates, D.M., Watts, D.G.: Relative curvature measures of nonlinearity. J. Roy. Stat. Soc. B 42, 1–25 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Von Bertalanffy, L.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32(3), 217–231 (1957)

    Article  Google Scholar 

  3. Brody, S.: Bioenergetics and growth: with special reference to the efficiency complex. In: Domestic Animals. Reinhold Publishing Corp., New York (1945)

    Google Scholar 

  4. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. Lond. 115, 513–583 (1825)

    Google Scholar 

  5. Koya, P., Goshu, A.: Generalized mathematical model for biological growths. Open J. Model. Simul. 1, 42–53 (2013)

    Article  Google Scholar 

  6. Kubáček, L.: On a linearization of regression models. Appl. Math. 40(1), 61–78 (1995)

    Article  MathSciNet  Google Scholar 

  7. Kubáčková, L.: Joint confidence and threshold ellipsoids in regression models. Tatra Mt. 7, 157–160 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Martyushev, L.M., Terentiev, P.S.: Universal Model of Ontogenetic Growth: Substantiation and Development of Schmalhausen’s Model (2014). https://arxiv.org/abs/1404.4318

  9. Parks, J.R.: A theory of feeding and growth of animals. In: Advanced Series in Agricultural Sciences. Series, vol. 11. Springer, Heidelberg (1982)

    Google Scholar 

  10. Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10, 290–300 (1959)

    Article  Google Scholar 

  11. Schmalhausen, I.: Beiträge zur quantitativen Analyse der Formbildung. II. Das Problem des proportionalen Wachstums. Roux’ Archive für Entwicklungsmechanik der Organismen 110(1), 33–62 (1927)

    Google Scholar 

  12. Schmalhausen, I.: Das Wachstumsgesetz und die Methode der Bestimmung der Wachstumskonstante. W. Roux’ Archiv f. Entwicklungsmechanik 113(3), 462–519 (1928)

    Article  Google Scholar 

  13. Ünal, D., Yeldan, H., Gül, E., Ergüç, N.D., Adiyan, M.: Gompertz, logistic and brody functions to model the growth of fish species Siganus rivulatus. Acta Biologica Turcica 30(4), 140–145 (2017)

    Google Scholar 

  14. Verhulst, P.-F.: Recherches mathématiques sur la loi d’accroissement de la population” [Mathematical Researches into the Law of Population Growth Increase]. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles (1845)

    Google Scholar 

  15. Winsor, C.: The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. U.S.A. 18(1), 1–8 (1932)

    Article  Google Scholar 

  16. Zeide, B.: Analysis of growth equations. Forest Sci. 39, 594–616 (1993)

    Article  Google Scholar 

Download references

Acknowledgement

This contribution has been supported by institutional support of the University of Pardubice, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Marek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marek, J., Pozdílková, A., Kupka, L. (2021). Growth Models of Female Dairy Cattle. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020). SOCO 2020. Advances in Intelligent Systems and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-3-030-57802-2_26

Download citation

Publish with us

Policies and ethics