Skip to main content

Visual SLAM Location Methods Based on Complex Scenes: A Review

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12240))

Included in the following conference series:

Abstract

In recent years, positioning for simple static scenes has been unable to meet the requirements of people’s production and life. People want to achieve accurate positioning in practical scenarios such as airports, exhibition halls and stations. Therefore, the research on visual SLAM positioning in complex dynamic scenes is increasing day by day. This article reviews the research results of SLAM positioning methods and visual SLAM positioning methods for complex scenes in recent years. Firstly, the development process of laser SLAM, visual SLAM, semantic SLAM and multi-sensor fusion is introduced, but the focus is on visual SLAM. Secondly, the paper summarizes the methods of moving object detection and visual SLAM localization in complex dynamic scenes. Then the paper describes the development of deep learning and multi-sensor fusion in visual SLAM positioning based on complex dynamic scenes. Finally, the shortcomings of visual SLAM positioning methods based on complex scenes are summarized and the research prospects are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Proceedings of IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987

    Google Scholar 

  2. Sileshi, B.G., Oliver, J., Toledo, R., Goncalves, J., Costa, P.: On the behaviour of low cost laser scanners in HW/SW particle filter SLAM applications. Robot. Auton. Syst. 80(C), 11–23 (2016)

    Article  Google Scholar 

  3. Thallas, A., Tsardoulias, E., Petrou, L.: Particle filter—scan matching hybrid SLAM employing topological information. In: 24th Mediterranean Conference on Control and Automation, Athens, Greece, 21–24 June 2016

    Google Scholar 

  4. Song, W., Yang, Y., Fu, M., Kornhauser, A., Wang, M.: Critical rays self-adaptive particle filtering SLAM. J. Intell. Robot. Syst. 92(1), 107–124 (2017). https://doi.org/10.1007/s10846-017-0742-z

    Article  Google Scholar 

  5. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with Rao-Blackwellized particle filters. IEEE Trans. Rob. 23(1), 34–46 (2007)

    Article  Google Scholar 

  6. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007

    Google Scholar 

  7. Mur-Artal, R., Montiel, J.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  8. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15986-2_2

    Chapter  Google Scholar 

  9. Konolige, K., Grisetti, G., Kümmerle, R.: Efficient sparse pose adjustment for 2D mapping. In: International Conference on Intelligent Robots and Systems, pp. 22–29 (2010)

    Google Scholar 

  10. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013

    Google Scholar 

  11. Strasdat, H., Montiel, J.M.M., Davison, A.J.: Visual SLAM: why filter? Image Vis. Comput. 30(2), 65–77 (2012)

    Article  Google Scholar 

  12. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016

    Google Scholar 

  13. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052 (2007)

    Article  Google Scholar 

  14. Sim, R., Elinas, P., Griffin, M.: Vision-based SLAM using the Rao-Blackwellised particle filter. In: IJCAI Workshop on Reasoning with Uncertainty in Robotics, vol. 9(4), pp. 500–509 (2005)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  16. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  17. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF, vol. 58, no. 11, pp. 2564–2571 (2011)

    Google Scholar 

  18. Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: IEEE International Conference on Computer Vision, pp. 1449–1456 (2013)

    Google Scholar 

  19. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  20. Newcombe, R.A., Izadi, S., Hilliges, O., et al.: KinectFusion: real-time dense surface mapping and tracking. In: IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)

    Google Scholar 

  21. Kerl, C., Sturm, J., Cremers, D.: Dense visual SLAM for RGB-D cameras. In: International Conference on Intelligent Robots and Systems, pp. 2100–2106 (2014)

    Google Scholar 

  22. Yang, S., Scherer, S.A., Yi, X., et al.: Multi-camera visual SLAM for autonomous navigation of micro aerial vehicles. Robot. Auton. Syst. 93(1), 116–134 (2017)

    Article  Google Scholar 

  23. Bao, S.Y., Bagra, M., Chao, Y.W., et al.: Semantic structure from motion with points, regions, and objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2703–2710 (2012)

    Google Scholar 

  24. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., et al.: SLAM++: simultaneous localisation and mapping at the level of objects. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1352–1359 (2013)

    Google Scholar 

  25. Vineet, V., Miksik, O., Lidegaard, M., et al.: Incremental dense semantic stereo fusion for large- scale semantic scene reconstruction. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 75–82 (2015)

    Google Scholar 

  26. Bowman, S.L., Atanasov, N., Daniilidis, K., et al.: Probabilistic data association for semantic slam. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1722–1729 (2017)

    Google Scholar 

  27. Schönberger, J.L., Pollefeys, M., Geiger, A., et al.: Semantic visual localization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–21 (2008)

    Google Scholar 

  28. Rünz, M., Agapito, L.: MaskFusion: real-time recognition, tracking and reconstruction of multiple moving objects. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, pp. 1–10 (2018)

    Google Scholar 

  29. Jie, Z., Jun, Z.: A study on laser and visual mapping of mobile robots with improved ICP algorithm. Mech. Electr. Eng. (12) 1480–1484 (2017)

    Google Scholar 

  30. Qin, T., Li, P., Shen, S.: VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 3(4), 1–17 (2017)

    Google Scholar 

  31. Lei, Y.: Research on simultaneous positioning and mapping of indoor robots. Guangxi University of Science and Technology (2019)

    Google Scholar 

  32. Yin, L., Peng, J., Jiang, G., Ou, Y.: Research on synchronous positioning and mapping of low-cost laser and vision. Integr. Tech. (2) (2019)

    Google Scholar 

  33. Cheng, Y.H., Wang, J.: A motion image detection method based on the inter-frame difference method. Appl. Mech. Mater. 490–491, 1283–1286 (2014)

    Google Scholar 

  34. Min, H., Shu, H., Liu, Q., Xia, Y., Gang, C.: Moving object detection method based on NMI features motion detection frame difference. Adv. Sci. Lett. 6(1), 477–480 (2012)

    Article  Google Scholar 

  35. Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  36. Zhou, J., Wu, X., Zhang, C., Lu, W.: A moving object detection method based on hybrid Gaussian model of sliding window. J. Electron. Inf. Tech. 35(07), 1650–1656 (2013)

    Article  Google Scholar 

  37. Hahnel, D., Triebel, R., Burgard, W., et al.: Map building with mobile robots in dynamic environments. In: IEEE International Conference on Robotics and Automation, pp. 1557–1563. IEEE, Piscataway (2003)

    Google Scholar 

  38. Tan, W., Liu, H.M., Dong, Z.L., et al.: Robust monocular SLAM in dynamic environments. In: 12th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 209–218. IEEE Piscataway (2013)

    Google Scholar 

  39. Oh, S., Hahn, M., Kim, J.: Dynamic EKF-based SLAM for autonomous mobile convergence platforms. Multimedia Tools Appl. 74(16), 6413–6430 (2014). https://doi.org/10.1007/s11042-014-2093-0

    Article  Google Scholar 

  40. Newcombe, R.A., Fox, D., Seitz, S.M.: DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352. IEEE, Piscataway (2015)

    Google Scholar 

  41. Kumar, S., Dhiman, V., Ganesh, M.R., Corso, J.: Spatiotemporal Articulated Models for Dynamic SLAM (2016)

    Google Scholar 

  42. Sun, Y., Liu, M., Meng, Q.H.: Improving RGB-D SLAM in dynamic environments: a motion removal approach. Robot. Auton. Syst. 89, 110–122 (2017)

    Article  Google Scholar 

  43. Sun, Y., Liu, M., Meng, Q.H.: Invisibility: a moving-object removal approach for dynamic scene modelling using RGB-D camera. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017

    Google Scholar 

  44. Barsan, I.A., Liu, P., Pollefeys, M., Geiger, A.: Robust dense mapping for large-scale dynamic environments. In: International Conference on Robotics and Automation (ICRA), pp. 7510–7517 (2018)

    Google Scholar 

  45. Sun, Y., Liu, M., Meng, M.: Motion removal for reliable RGB-D SLAM in dynamic environments. Robot. Auton. Syst. 108, 115–128 (2018)

    Article  Google Scholar 

  46. Berta, B., Facil, J.M., Javier, C., Jose, N.: DynaSLAM: tracking, mapping and inpainting in dynamic scenes. IEEE Robot. Autom. Lett. 3(4), 4076–4083 (2018)

    Article  Google Scholar 

  47. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. (2018)

    Google Scholar 

  48. Yu, C. et al.: DS-SLAM: a semantic visual SLAM towards dynamic environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1168–1174 (2018)

    Google Scholar 

  49. Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A., Leutenegger, S.: MID-Fusion: octree-based object-level multi-instance dynamic SLAM. In: International Conference on Robotics and Automation, Montreal, Canada, 20–24 May 2019

    Google Scholar 

  50. Du, Z., Ma, Y., Li, X., Lu, H.: Fast scene reconstruction based on improved SLAM. Comput. Mater. Continua 61(1), 243–254 (2019)

    Article  Google Scholar 

  51. Wu, X., Luo, C., Zhang, Q., Zhou, J., Yang, H., Li, Y.: Text detection and recognition for natural scene images using deep convolutional neural networks. Comput. Mater. Continua 61(1), 289–300 (2019)

    Article  Google Scholar 

  52. Liu, Z., Xiang, B., Song, Y., Lu, H., Liu, Q.: An improved unsupervised image segmentation method based on multi-objective particle, swarm optimization clustering algorithm. Comput. Mater. Continua 58(2), 451–461 (2019)

    Article  Google Scholar 

  53. Zhang, J., Shi, C., Wang, Y.: SLAM method based on visual features in dynamic scenes. Computer program, pp. 1–8, 04 November 2019.http://kns.cnki.net/kcms/ Detail/31.1289.tp.20191025.1559.006.html

  54. Gao, C., Zhang, Y., Wang, X., Deng, Y., Jiang, H.: Semi-direct method RGB-D SLAM algorithm for indoor dynamic environment. Robot 41(03), 372–383 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (Grant No. 61640305). This research was financially supported by the project of Thousands outstanding young teachers’ training in higher education institutions of Guangxi, The Young and Middle-aged Teachers Research Fundamental Ability Enhancement of Guangxi University (ID: 2019KY0621), Natural Science Foundation of Guangxi Province (No. 2018GXNSFAA281164). Guangxi Colleges and Universities Key Laboratory Breeding Base of System Control and Information Processing, Hechi University research project start-up funds (XJ2015KQ004), Supported by Colleges and Universities Key Laboratory of Intelligent Integrated Automation (GXZDSY2016-04), Hechi City Science and Technology Project (1694-3-2), Research on multi robot cooperative system based on artificial fish swarm algorithm (2017CFC811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Peng, J. (2020). Visual SLAM Location Methods Based on Complex Scenes: A Review. In: Sun, X., Wang, J., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2020. Lecture Notes in Computer Science(), vol 12240. Springer, Cham. https://doi.org/10.1007/978-3-030-57881-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57881-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57880-0

  • Online ISBN: 978-3-030-57881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics