Skip to main content

Secure Generalized Deduplication via Multi-Key Revealing Encryption

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2020)

Abstract

Cloud Storage Providers (CSPs) offer solutions to relieve users from locally storing vast amounts of data, including personal and sensitive ones. While users may desire to retain some privacy on the data they outsource, CSPs are interested in reducing the total storage space by employing compression techniques such as deduplication. We propose a new cryptographic primitive that simultaneously realizes both requirements: Multi-Key Revealing Encryption (MKRE). The goal of MKRE is to disclose the result of a pre-defined function over multiple ciphertexts, even if the ciphertexts were generated using different keys, while revealing nothing else about the data. We present a formal model and a security definition for MKRE and provide a construction of MKRE for generalized deduplication that only uses symmetric key primitives in a black-box way. Our construction allows (a) cloud providers to reduce the storage space by using generalized deduplication to compress encrypted data across users, and (b) each user to maintain a certain privacy level for the outsourced information. Our scheme can be proven secure in the random oracle model (and we argue that this is a necessary evil). We develop a proof-of-concept implementation of our solution. For a test data set, our MKRE construction achieves secure generalized deduplication with a compression ratio of 87% for 1 KB file chunks and 82.2% for 8 KB chunks. Finally, our experiments show that, compared to generalized deduplication setup with un-encrypted files, adding privacy via MKRE introduces a compression overhead of less than \(3\%\) and reduces the storage throughput by at most \(6.9\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “Revealing Encryption” was first introduced in an oral presentation by Adam O’Neill.

  2. 2.

    Revealing encryption can be seen as a special case of functional encryption where a single decryption key is published together with the public parameters when the system is initialized.

  3. 3.

    Similarly, MKRE can be seen as a special case of multi-input functional encryption.

  4. 4.

    In this work, we perform generalized deduplication based on Hamming codes, however, the principles we develop are general and can be easily transferred to any transformation function.

  5. 5.

    With the exception of SE for which there exist realization both in the asymmetric [3] and in the symmetric settings [29].

  6. 6.

    To improve readability and have an homogeneous language when extending RE to multiple users (MKRE), we use \(\mathsf {Reveal}\) instead of Eval in [15]. Also, in Sect. 4 we will split the algorithm \(\mathsf {Setup}\) from [15] into a global set up procedure, called \(\mathsf {Setup}\), and a user-dependent \(\mathsf {KeyGen}\).

References

  1. Agrawal, S., Clear, M., Frieder, O., Garg, S., O’Neill, A., Thaler, J.: Ad hoc multi-input functional encryption (2019). https://eprint.iacr.org/2019/356

  2. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_28

    Chapter  Google Scholar 

  3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

    Chapter  Google Scholar 

  4. Bellare, M., et al.: Hedged public-key encryption: how to protect against bad randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_14

    Chapter  Google Scholar 

  5. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server-aided encryption for deduplicated storage. In: USENIX Security Symposium, pp. 179–194 (2013)

    Google Scholar 

  6. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_18

    Chapter  Google Scholar 

  7. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_7

    Chapter  Google Scholar 

  8. Boyd, C., Davies, G.T., Gjøsteen, K., Raddum, H., Toorani, M.: Security notions for cloud storage and deduplication. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 347–365. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01446-9_20

    Chapter  MATH  Google Scholar 

  9. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: ACM STOC, pp. 639–648 (1996)

    Google Scholar 

  10. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption with limited leakage. Fast Softw. Encryption 2016, 474–493 (2016)

    Article  Google Scholar 

  11. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized multi-client functional encryption for inner product. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 703–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_24

    Chapter  Google Scholar 

  12. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. J. Comput. Secur. 19(5), 895–934 (2011)

    Article  Google Scholar 

  13. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M., Simon, P.: Reclaiming space from duplicate files in a serverless distributed file system. ICDCS 2002, 617–624 (2002)

    Google Scholar 

  14. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_32

    Chapter  Google Scholar 

  15. Haagh, H., Ji, Y., Li, C., Orlandi, C., Song, Y.: Revealing encryption for partial ordering. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 3–22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_1

    Chapter  Google Scholar 

  16. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Cryptol. 26, 191–224 (2013)

    Article  MathSciNet  Google Scholar 

  18. Li, J., Chen, X., Li, M., Li, J., Lee, P.P., Lou, W.: Secure deduplication with efficient and reliable convergent key management. IEEE Trans. Parallel Distrib. Syst. 25(6), 1615–1625 (2013)

    Article  Google Scholar 

  19. Li, X., Li, J., Huang, F.: A secure cloud storage system supporting privacy-preserving fuzzy deduplication. Soft Comput. 20(4), 1437–1448 (2015). https://doi.org/10.1007/s00500-015-1596-6

    Article  Google Scholar 

  20. Libert, B., Ţiţiu, R.: Multi-client functional encryption for linear functions in the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 520–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_18

    Chapter  MATH  Google Scholar 

  21. Liu, J., Asokan, N., Pinkas, B.: secure deduplication of encrypted data without additional independent servers. In: ACM CCS, pp. 874–885 (2015)

    Google Scholar 

  22. Liu, J., Duan, L., Li, Y., Asokan, N.: Secure deduplication of encrypted data: refined model and new constructions. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 374–393. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_20

    Chapter  Google Scholar 

  23. Lucani, D.E., Nielsen, L., Orlandi, C., Pagnin, E., Vestergaard, R.: Secure generalized deduplication via multi-key revealing encryption. Cryptology ePrint Archive, Report 2020/799 (2020). https://eprint.iacr.org/2020/799 (full version of this work)

  24. Michalevsky, Y., Joye, M.: Decentralized policy-hiding ABE with receiver privacy. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11099, pp. 548–567. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98989-1_27

    Chapter  Google Scholar 

  25. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

    Chapter  Google Scholar 

  26. Nielsen, L., Vestergaard, R., Yazdani, N., Talasila, P., Lucani, D.E., Sipos, M.: Alexandria: a proof-of-concept implementation and evaluation of generalised data deduplication. In: IEEE GLOBECOM Workshop on Advances in Edge Computing (2019)

    Google Scholar 

  27. Oracle: What Is ZFS? (2019). https://docs.oracle.com/cd/E23823_01/html/819-5461/zfsover-2.html. Accessed 12 Oct 2019

  28. Planet Labs Inc: download samples of our, high resolution imagery, for monitoring, tasking and large area mapping (2019). https://info.planet.com/download-free-high-resolution-skysat-image-samples/. Accessed 17 Jun 2019

  29. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. NDSS 71, 72–75 (2014)

    Google Scholar 

  30. The OpenSSL Project: OpenSSL: the open source toolkit for SSL/TLS. www.openssl.org. Accessed 23 Sep 2019

  31. Vestergaard, R., Lucani, D.E., Zhang, Q.: A randomly accessible lossless compression scheme for time-series data. In: IEEE INFOCOM (2020)

    Google Scholar 

  32. Vestergaard, R., Zhang, Q., Lucani, D.E.: Generalized deduplication: bounds, convergence, and asymptotic properties. In: IEEE GLOBECOM (2019)

    Google Scholar 

  33. Vestergaard, R., Zhang, Q., Lucani, D.E.: Lossless compression of time series data with generalized deduplication. In: IEEE GLOBECOM (2019)

    Google Scholar 

  34. Xia, W., et al.: A comprehensive study of the past, present, and future of data deduplication. Proc. IEEE 104(9), 1681–1710 (2016)

    Article  Google Scholar 

  35. Zhao, Y., Chow, S.S.M.: Updatable block-level message-locked encryption. IEEE Trans. Dependable Secure Comput. (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially financed by: the SCALE-IoT project (Grant No. DFF-7026-00042B) and FoCC (Grant No. DFF-6108-00169) granted by the Danish Council for Independent Research; the AUFF Starting Grant AUFF-2017-FLS-7-1; Aarhus University’s DIGIT Centre; the strategic research area ELLIIT; the Concordium Blockhain Research Center, Aarhus University, Denmark; the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No 803096 (SPEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Vestergaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucani, D.E., Nielsen, L., Orlandi, C., Pagnin, E., Vestergaard, R. (2020). Secure Generalized Deduplication via Multi-Key Revealing Encryption. In: Galdi, C., Kolesnikov, V. (eds) Security and Cryptography for Networks. SCN 2020. Lecture Notes in Computer Science(), vol 12238. Springer, Cham. https://doi.org/10.1007/978-3-030-57990-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57990-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57989-0

  • Online ISBN: 978-3-030-57990-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics