Skip to main content

Selective Enzymes at the Core of Advanced Electroanalytical Tools: The Bloom of Biosensors

  • Chapter
  • First Online:
Enzymes for Solving Humankind's Problems

Abstract

Enzymes are biological catalysts whose mission is to accelerate biochemical reactions in living organisms. Once extracted from cells they can be used in a broad range of applications for the benefit of humankind. One of the best examples is the so-called biosensor, i.e., a bioanalytical device where enzymes play a key role in the selective recognition of the analyte. Either as point-of-care tests, bench instruments, or continuous analysis systems, they have been useful in clinical diagnostics, environmental and food control, forensic sciences, and industrial processing, often replacing bulky and expensive equipment that require trained operators. Enzymes are by far the most commonly used biological elements in biosensors, being typically associated to electrochemical transducers, as in the case of the biggest commercial success, the blood glucose meter. In this context, redox enzymes are clearly dominant, since electrons exchange during the biochemical reaction facilitates their interaction with electrodes. However, hydrolases can also be used, provided that an electroactive species participates in the reaction. In this review, we address the topic of enzyme-based biosensors, with special emphasis on the electrochemical ones. The manuscript will cover four representative classes of enzymes, namely oxidases, dehydrogenases, reductases, and hydrolases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster RJ (2017) Editorial: sensors and biosensors. Curr Opin Electrochem 3:1–3. https://doi.org/10.1016/j.coelec.2017.10.002

    Article  Google Scholar 

  2. Monteiro T, Almeida MG (2019) Electrochemical enzyme biosensors revisited: old solutions for new problems. Crit Rev Anal Chem 49:44–66. https://doi.org/10.1080/10408347.2018.1461552

    Article  CAS  PubMed  Google Scholar 

  3. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196. https://doi.org/10.1039/c3cs35528d

    Article  CAS  PubMed  Google Scholar 

  4. Markets and Markets (2019) Biosensors market by type (sensor patch and embedded device), product (wearable and nonwearable), technology (electrochemical and optical), application (POC, home diagnostics, research lab, food & beverages), and geography—Global Forecast to 2024. In: https://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html. Accessed Mar 2020

  5. Grand View Research (2020) Biosensors market size, share & trends analysis report by application (Agriculture, medical) by technology (thermal, electrochemical, optical), by end use (PoC testing, food industry), and segment forecasts, 2019–2026. In: https://www.grandviewresearch.com/industry-analysis/biosensors-market. Accessed Mar 2020

  6. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576. https://doi.org/10.3390/s100504558

    Article  PubMed  Google Scholar 

  7. Fagan RL, Palfey BA (2010) Flavin-dependent enzymes. In: Liu H-W, Mander L (eds) Comprehensive natural products II. Elsevier Science, pp 37–113

    Google Scholar 

  8. Bartlett PN, Al-Lolage FA (2017) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem 819:26–37. https://doi.org/10.1016/j.jelechem.2017.06.021

    Article  CAS  Google Scholar 

  9. Wohlfahrt G, Witt S, Hendle J et al (1999) 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes. Acta Crystallogr Sect D: Biol Crystallogr 55:969–977. https://doi.org/10.1107/S0907444999003431

    Article  CAS  Google Scholar 

  10. Dijkman WP, de Gonzalo G, Mattevi A, Fraaije MW (2013) Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 97:5177–5188. https://doi.org/10.1007/s00253-013-4925-7

    Article  CAS  PubMed  Google Scholar 

  11. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185. https://doi.org/10.1016/0956-5663(92)87013-F

    Article  CAS  Google Scholar 

  12. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501. https://doi.org/10.1016/j.biotechadv.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  13. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825. https://doi.org/10.1021/cr068123a

    Article  CAS  PubMed  Google Scholar 

  14. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP (2005) Ethanol biosensors based on alcohol oxidase. Biosens Bioelectron 21:235–247. https://doi.org/10.1016/j.bios.2004.09.030

    Article  CAS  PubMed  Google Scholar 

  15. Goswami P, Chinnadayyala SSR, Chakraborty M et al (2013) An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 97:4259–4275. https://doi.org/10.1007/s00253-013-4842-9

    Article  CAS  PubMed  Google Scholar 

  16. Koch C, Neumann P, Valerius O et al (2016) Crystal structure of alcohol oxidase from Pichia pastoris. PLoS ONE 11:e0149846. https://doi.org/10.1371/journal.pone.0149846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen Q-T, Romero E, Dijkman WP et al (2018) Structure-based engineering of phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochemistry 57:6209–6218. https://doi.org/10.1021/acs.biochem.8b00918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghanem M, Fan Francis K, Gadda G (2003) Spectroscopic and kinetic properties of recombinant choline oxidase from Arthrobacter globiformis. Biochemistry 42:15179–15188. https://doi.org/10.1021/bi035435o

    Article  CAS  PubMed  Google Scholar 

  19. Quaye O, Lountos GT, Fan et al (2008) Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase. Biochemistry 47:243–256. https://doi.org/10.1021/bi7017943

    Article  CAS  PubMed  Google Scholar 

  20. Baker KL, Bolger FB, Lowry JP (2017) Development of a microelectrochemical biosensor for the real-time detection of choline. Sensors Actuators B Chem 243:412–420. https://doi.org/10.1016/j.snb.2016.11.110

    Article  CAS  Google Scholar 

  21. Rahimi P, Joseph Y (2019) Enzyme-based biosensors for choline analysis: A review. TrAC Trends Anal Chem 110:367–374. https://doi.org/10.1016/j.trac.2018.11.035

    Article  CAS  Google Scholar 

  22. Arima J, Sasaki C, Sakaguchi C et al (2009) Structural characterization of l-glutamate oxidase from Streptomyces sp. X-119-6. FEBS J 276:3894–3903. https://doi.org/10.1111/j.1742-4658.2009.07103.x

    Article  CAS  PubMed  Google Scholar 

  23. Hughes G, Pemberton RM, Fielden PR, Hart JP (2016) The design, development and application of electrochemical glutamate biosensors. TrAC Trends Anal Chem 79:106–113. https://doi.org/10.1016/j.trac.2015.10.020

    Article  CAS  Google Scholar 

  24. Yue QK, Kass IJ, Sampson NS, Vrielink A (1999) CCrystal structure determination of cholesterol oxidase from streptomyces and structural characterization of key active site mutants. Biochemistry 38:4277–4286. https://doi.org/10.1021/bi982497j

    Article  CAS  PubMed  Google Scholar 

  25. MacLachlan J, Wotherspoon ATL, Ansell RO, Brooks CJW (2000) Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 72:169–195. https://doi.org/10.1016/S0960-0760(00)00044-3

    Article  CAS  PubMed  Google Scholar 

  26. Lyubimov AY, Heard K, Tang H et al (2007) Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase. Protein Sci 16:2647–2656. https://doi.org/10.1110/ps.073168207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vrielink A, Ghisla S (2009) Cholesterol oxidase: biochemistry and structural features. FEBS J 276:6826–6843. https://doi.org/10.1111/j.1742-4658.2009.07377.x

    Article  CAS  PubMed  Google Scholar 

  28. Narwal V, Deswal R, Batra B et al (2019) Cholesterol biosensors: a review. Steroids 143:6–17. https://doi.org/10.1016/j.steroids.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  29. Leiros I, Wang E, Rasmussen T et al (2006) The 2.1 Å structure of Aerococcus viridans L-lactate oxidase (LOX). Acta Crystallogr, Sect F: Struct Biol Cryst Commun 62:1185–1190. https://doi.org/10.1107/S1744309106044678

    Article  CAS  Google Scholar 

  30. Li SJ, Umena Y, Yorita K et al (2007) Crystallographic study on the interaction of l-lactate oxidase with pyruvate at 1.9 Å resolution. Biochem Biophys Res Commun 358:1002–1007. https://doi.org/10.1016/j.bbrc.2007.05.021

    Article  CAS  PubMed  Google Scholar 

  31. Lamas-Ardisana PJ, Loaiza OA, Añorga L et al (2014) Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosens Bioelectron 56:345–351. https://doi.org/10.1016/j.bios.2014.01.047

    Article  CAS  PubMed  Google Scholar 

  32. Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Reports 5:35–54. https://doi.org/10.1016/j.bbrep.2015.11.010

    Article  Google Scholar 

  33. Enroth C, Eger BT, Okamoto K et al (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci 97:10723–10728. https://doi.org/10.1073/pnas.97.20.10723

    Article  CAS  PubMed  Google Scholar 

  34. Pauff JM, Zhang J, Bell CE, Hille R (2008) Substrate orientation in xanthine oxidase. J Biol Chem 283:4818–4824. https://doi.org/10.1074/jbc.M707918200

    Article  CAS  PubMed  Google Scholar 

  35. Hille R, Nishino T (1995) Xanthine oxidase and xanthine dehydrogenase. FASEB J 9:995–1003. https://doi.org/10.1096/fasebj.9.11.7649415

    Article  CAS  PubMed  Google Scholar 

  36. Wang C-H, Zhang C, Xing X-H (2016) Xanthine dehydrogenase: an old enzyme with new knowledge and prospects. Bioengineered 7:395–405. https://doi.org/10.1080/21655979.2016.1206168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark LC, Lyons C (1962) Electrode Systems for continous mmonitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  CAS  PubMed  Google Scholar 

  38. D’Orazio P (2003) Biosensors in clinical chemistry. Clin Chim Acta 334:41–69. https://doi.org/10.1016/S0009-8981(03)00241-9

    Article  CAS  PubMed  Google Scholar 

  39. Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20:2435–2453. https://doi.org/10.1016/j.bios.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  40. da Silva Pereira, Neves MM, González-García MB, Hernández-Santos D, Fanjul-Bolado P (2018) Future trends in the market for electrochemical biosensing. Curr Opin Electrochem 10:107–111. https://doi.org/10.1016/j.coelec.2018.05.002

    Article  CAS  Google Scholar 

  41. Zhao C, Thuo MM, Liu X (2013) A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci Technol Adv Mater 14:054402. https://doi.org/10.1088/1468-6996/14/5/054402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desmet C, Marquette CA, Blum LJ, Doumèche B (2016) Paper electrodes for bioelectrochemistry: biosensors and biofuel cells. Biosens Bioelectron 76:145–163. https://doi.org/10.1016/j.bios.2015.06.052

    Article  CAS  PubMed  Google Scholar 

  43. Salim A, Lim S (2019) Recent advances in noninvasive flexible and wearable wireless biosensors. Biosens Bioelectron 141:111422. https://doi.org/10.1016/j.bios.2019.111422

    Article  CAS  PubMed  Google Scholar 

  44. Yu H, Luo X, Shi W et al (2019) A cork-based smart biosensing system for ethanol. IEEE Sens J 19:2313–2319. https://doi.org/10.1109/JSEN.2018.2885000

    Article  CAS  Google Scholar 

  45. Sha P, Luo X, Shi W et al (2019) A smart dental floss for biosensing of glucose. Electroanalysis 31:791–796. https://doi.org/10.1002/elan.201800885

    Article  CAS  Google Scholar 

  46. Pundir CS, Devi R (2014) Biosensing methods for xanthine determination: a review. Enzyme Microb Technol 57:55–62. https://doi.org/10.1016/j.enzmictec.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  47. Alam F, RoyChoudhury S, Jalal AH et al (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829. https://doi.org/10.1016/j.bios.2018.06.054

    Article  CAS  PubMed  Google Scholar 

  48. Sabu C, Henna TK, Raphey VR et al (2019) Advanced biosensors for glucose and insulin. Biosens Bioelectron 141:111201. https://doi.org/10.1016/j.bios.2019.03.034

    Article  CAS  PubMed  Google Scholar 

  49. Johansson K, Jönsson-Pettersson G, Gorton L et al (1993) A reagentless amperometric biosensor for alcohol detection in column liquid chromatography based on co-immobilized peroxidase and alcohol oxidase in carbon paste. J Biotechnol 31:301–316. https://doi.org/10.1016/0168-1656(93)90076-Y

    Article  CAS  PubMed  Google Scholar 

  50. Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366:560–568. https://doi.org/10.1007/s002160051551

    Article  PubMed  Google Scholar 

  51. Green MJ, Hill HAO (1986) Amperometric enzyme electrodes. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 82:1237. https://doi.org/10.1039/f19868201237

  52. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403. https://doi.org/10.1016/j.bios.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Borgmann S, Hartwich G, Schulte A, Schuhmann W (2005) Amperometric Enzyme Sensors based on Direct and Mediated Electron Transfer. In: Paleček E, Scheller F, Wang J (eds) Electrochemistry of nucleic acids and proteins Arthrobacter globiformis towards electrochemical sensors for genomics and proteomics. Elsevier Science, pp 599–655

    Google Scholar 

  54. Scheller FW, Lisdat F, Wollenberger U (2005) Application of electrically contacted enzymes for biosensors. In: Willner I, Katz E (eds) Bioelectronics. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, FRG, pp 99–126

    Chapter  Google Scholar 

  55. Jiang L, McNeil CJ, Cooper JM (1995) Direct electron transfer reactions of glucose oxidase immobilised at a self-assembled monolayer. J Chem Soc, Chem Commun 12:1293–1295. https://doi.org/10.1039/c39950001293

    Article  Google Scholar 

  56. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chemie - Int Ed 48:5897–5899. https://doi.org/10.1002/anie.200902191

    Article  CAS  Google Scholar 

  57. Sajjadi S, Ghourchian H, Rahimi P (2011) Different behaviors of single and multi wall carbon nanotubes for studying electrochemistry and electrocatalysis of choline oxidase. Electrochim Acta 56:9542–9548. https://doi.org/10.1016/j.electacta.2011.04.039

    Article  CAS  Google Scholar 

  58. Wu S, Chen J, Liu D et al (2016) A biocompatible cerasome based platform for direct electrochemistry of cholesterol oxidase and cholesterol sensing. RSC Adv 6:70781–70790. https://doi.org/10.1039/C6RA06368C

    Article  CAS  Google Scholar 

  59. Gao Y, Shen C, Di J, Tu Y (2009) Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase. Mater Sci Eng, C 29:2213–2216. https://doi.org/10.1016/j.msec.2009.05.004

    Article  CAS  Google Scholar 

  60. Wilson GS (2016) Native glucose oxidase does not undergo direct electron transfer. Biosens Bioelectron 82:7–8. https://doi.org/10.1016/j.bios.2016.04.083

    Article  CAS  Google Scholar 

  61. Milton RD, Minteer SD (2017) Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J R Soc Interface 14:20170253. https://doi.org/10.1098/rsif.2017.0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vogt S, Schneider M, Schäfer-Eberwein H, Nöll G (2014) Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry. Anal Chem 86:7530–7535. https://doi.org/10.1021/ac501289x

    Article  CAS  PubMed  Google Scholar 

  63. Abbasi S, Gharaghani S, Benvidi A et al (2018) An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights. Int J Biol Macromol 119:1298–1310. https://doi.org/10.1016/j.ijbiomac.2018.08.018

    Article  CAS  PubMed  Google Scholar 

  64. Gadda G, Wels G, Pollegioni L et al (1997) Characterization of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum. Eur J Biochem 250:369–376. https://doi.org/10.1111/j.1432-1033.1997.0369a.x

    Article  CAS  PubMed  Google Scholar 

  65. Yorita K, Matsuoka T, Misaki H, Massey V (2000) Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN. Proc Natl Acad Sci 97:13039–13044. https://doi.org/10.1073/pnas.250472297

    Article  CAS  PubMed  Google Scholar 

  66. Ivnitski DM, Khripin C, Luckarift HR et al (2010) Surface characterization and direct bioelectrocatalysis of multicopper oxidases. Electrochim Acta 55:7385–7393. https://doi.org/10.1016/j.electacta.2010.07.026

    Article  CAS  Google Scholar 

  67. Ludwig R, Ortiz R, Schulz C et al (2013) Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem 405:3637–3658. https://doi.org/10.1007/s00216-012-6627-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Torimura M, Kano K, Ikeda T, Ueda T (1997) Spectroelectrochemical characterization of quinohemoprotein alcohol dehydrogenase from gluconobacter suboxydans. Chem Lett 26:525–526. https://doi.org/10.1246/cl.1997.525

    Article  Google Scholar 

  69. Tkac J, Svitel J, Vostiar I, et al (2009) Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry 76:53–62. https://doi.org/10.1016/j.bioelechem.2009.02.013

  70. Tanne C, Göbel G, Lisdat F (2010) Development of a (PQQ)-GDH-anode based on MWCNT-modified gold and its application in a glucose/O2-biofuel cell. Biosens Bioelectron 26:530–535. https://doi.org/10.1016/j.bios.2010.07.052

    Article  CAS  PubMed  Google Scholar 

  71. Takeda K, Matsumura H, Ishida T et al (2015) Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes. PLoS ONE 10:e0115722. https://doi.org/10.1371/journal.pone.0115722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larsson T, Lindgren A, Ruzgas T (2001) Spectroelectrochemical study of cellobiose dehydrogenase and diaphorase in a thiol-modified gold capillary in the absence of mediators. Bioelectrochemistry 53:243–249. https://doi.org/10.1016/S0302-4598(01)00099-X

  73. Aguey-Zinsou KF, Bernhardt PV, Kappler U, McEwan AG (2003) Direct electrochemistry of a bacterial sulfite dehydrogenase. J Am Chem Soc 125:530–535. https://doi.org/10.1021/ja028293e

    Article  CAS  PubMed  Google Scholar 

  74. Christenson A, Gustavsson T, Gorton L, Hägerhäll C (2008) Direct and mediated electron transfer between intact succinate:quinone oxidoreductase from Bacillus subtilis and a surface modified gold electrode reveals redox state-dependent conformational changes. Biochim Biophys Acta Bioenerg 1777:1203–1210.https://doi.org/10.1016/j.bbabio.2008.05.450

  75. Barber MJ, Pollock V, Spence JT (1988) Microcoulometric analysis of trimethylamine dehydrogenase. Biochem J 256:657–659. https://doi.org/10.1042/bj2560657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Husain M, Davidson VL, Gray KA, Knaff DB (1987) Redox properties of the quinoprotein methylamine dehydrogenase from paracoccus denitrificans. Biochemistry 26:4139–4143. https://doi.org/10.1021/bi00387a059

    Article  CAS  PubMed  Google Scholar 

  77. Kalimuthu P, Fischer-Schrader K, Schwarz G, Bernhardt PV (2013) Mediated Electrochemistry of Nitrate Reductase from Arabidopsis thaliana. J Phys Chem B 117:7569–7577. https://doi.org/10.1021/jp404076w

    Article  CAS  PubMed  Google Scholar 

  78. Coelho C, Marangon J, Rodrigues D et al (2013) Induced peroxidase activity of haem containing nitrate reductases revealed by protein film electrochemistry. J Electroanal Chem 693:105–113. https://doi.org/10.1016/j.jelechem.2013.01.030

    Article  CAS  Google Scholar 

  79. Swamy U, Wang M, Tripathy JN et al (2005) Structure of Spinach Nitrite Reductase: Implications for Multi-electron Reactions by the Iron − Sulfur: Siroheme Cofactor †, ‡. Biochemistry 44:16054–16063. https://doi.org/10.1021/bi050981y

    Article  CAS  PubMed  Google Scholar 

  80. Cunha CA, Macieira S, Dias JM et al (2003) Cytochrome c nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. The relevance of the two calcium sites in the structure of the catalytic subunit (NrfA). J Biol Chem 278:17455–17465. https://doi.org/10.1074/jbc.M211777200

    Article  CAS  PubMed  Google Scholar 

  81. Jacobson F, Pistorius A, Farkas D et al (2007) pH Dependence of Copper Geometry, Reduction Potential, and Nitrite Affinity in Nitrite Reductase. J Biol Chem 282:6347–6355. https://doi.org/10.1074/jbc.M605746200

    Article  CAS  PubMed  Google Scholar 

  82. Besson S, Carneiro C, Moura JJG et al (1995) A Cytochrome cd1-type Nitrite Reductase Isolated from the Marine Denitrifier Pseudomonas nautica 617: Purification and Characterization. Anaerobe 1:219–226. https://doi.org/10.1006/anae.1995.1021

    Article  CAS  PubMed  Google Scholar 

  83. Gomes FO, Maia LB, Delerue-Matos C et al (2019) Third-generation electrochemical biosensor based on nitric oxide reductase immobilized in a multiwalled carbon nanotubes/1-n-butyl-3-methylimidazolium tetrafluoroborate nanocomposite for nitric oxide detection. Sensors Actuators B Chem 285:445–452. https://doi.org/10.1016/j.snb.2019.01.074

    Article  CAS  Google Scholar 

  84. Bastian NR, Kay CJ, Barber MJ, Rajagopalan KV (1991) Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans. J Biol Chem 266:45–51

    CAS  PubMed  Google Scholar 

  85. Mitrova B, Waffo AFT, Kaufmann P et al (2019) Trimethylamine N -Oxide Electrochemical Biosensor with a Chimeric Enzyme. ChemElectroChem 6:1732–1737. https://doi.org/10.1002/celc.201801422

    Article  CAS  Google Scholar 

  86. Rakauskiene GA, Čenas NK, Kulys JJ (1989) A ‘branched’ mechanism of the reverse reaction of yeast glutathione reductase An estimation of the enzyme standard potential values from the steady-state kinetics data. FEBS Lett 243:33–36. https://doi.org/10.1016/0014-5793(89)81212-8

    Article  CAS  PubMed  Google Scholar 

  87. Haynes CA, Koder RL, Miller A-F, Rodgers DW (2002) Structures of Nitroreductase in Three States. J Biol Chem 277:11513–11520. https://doi.org/10.1074/jbc.M111334200

    Article  CAS  PubMed  Google Scholar 

  88. Pandiaraj M, Madasamy T, Gollavilli PN et al (2013) Nanomaterial-based electrochemical biosensors for cytochrome c using cytochrome c reductase. Bioelectrochemistry 91:1–7. https://doi.org/10.1016/j.bioelechem.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  89. German N, Ramanaviciene A, Voronovic J, Ramanavicius A (2010) Glucose biosensor based on graphite electrodes modified with glucose oxidase and colloidal gold nanoparticles. Microchim Acta 168:221–229. https://doi.org/10.1007/s00604-009-0270-z

    Article  CAS  Google Scholar 

  90. Lourenço CF, Ledo A, Laranjinha J et al (2016) Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain. Sensors Actuators B Chem 237:298–307. https://doi.org/10.1016/j.snb.2016.06.083

    Article  CAS  Google Scholar 

  91. Gao J, Huang W, Chen Z et al (2019) Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors Actuators B Chem 287:102–110. https://doi.org/10.1016/j.snb.2019.02.020

    Article  CAS  Google Scholar 

  92. Kim J, Jeerapan I, Imani S et al (2016) Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sensors 1:1011–1019. https://doi.org/10.1021/acssensors.6b00356

    Article  CAS  Google Scholar 

  93. Aymerich J, Márquez A, Terés L et al (2018) Cost-effective smartphone-based reconfigurable electrochemical instrument for alcohol determination in whole blood samples. Biosens Bioelectron 117:736–742. https://doi.org/10.1016/j.bios.2018.06.044

    Article  CAS  PubMed  Google Scholar 

  94. Lansdorp B, Ramsay W, Hamid R, Strenk E (2019) Wearable Enzymatic Alcohol Biosensor. Sensors 19:2380. https://doi.org/10.3390/s19102380

    Article  CAS  Google Scholar 

  95. Kim J, Valdés-Ramírez G, Bandodkar AJ et al (2014) Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139:1632–1636. https://doi.org/10.1039/C3AN02359A

    Article  CAS  PubMed  Google Scholar 

  96. Hashemzadeh S, Omidi Y, Rafii-Tabar H (2019) Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim Acta 186:680. https://doi.org/10.1007/s00604-019-3791-0

    Article  CAS  Google Scholar 

  97. Dervisevic M, Dervisevic E, Çevik E, Şenel M (2017) Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform. J Food Drug Anal 25:510–519. https://doi.org/10.1016/j.jfda.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  98. Si Y, Park JW, Jung S et al (2018) Layer-by-layer electrochemical biosensors configuring xanthine oxidase and carbon nanotubes/graphene complexes for hypoxanthine and uric acid in human serum solutions. Biosens Bioelectron 121:265–271. https://doi.org/10.1016/j.bios.2018.08.074

    Article  CAS  PubMed  Google Scholar 

  99. Wu S, Hao J, Yang S et al (2019) Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing. Sensors Actuators B Chem 298:126856. https://doi.org/10.1016/j.snb.2019.126856

    Article  CAS  Google Scholar 

  100. Kaur G, Tomar M, Gupta V (2018) Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring. Sensors Actuators B Chem 261:460–466. https://doi.org/10.1016/j.snb.2018.01.144

    Article  CAS  Google Scholar 

  101. Dontsova EA, Zeifman YS, Budashov IA et al (2011) Screen-printed carbon electrode for choline based on MnO2 nanoparticles and choline oxidase/polyelectrolyte layers. Sensors Actuators B Chem 159:261–270. https://doi.org/10.1016/j.snb.2011.07.001

    Article  CAS  Google Scholar 

  102. Jamal M, Xu J, Razeeb KM (2010) Disposable biosensor based on immobilisation of glutamate oxidase on Pt nanoparticles modified Au nanowire array electrode. Biosens Bioelectron 26:1420–1424. https://doi.org/10.1016/j.bios.2010.07.071

    Article  CAS  PubMed  Google Scholar 

  103. Ganesana M, Trikantzopoulos E, Maniar Y et al (2019) Development of a novel micro biosensor for in vivo monitoring of glutamate release in the brain. Biosens Bioelectron 130:103–109. https://doi.org/10.1016/j.bios.2019.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chang K-S, Chang C-K, Chou S-F et al (2007) Characterization of a planar l-glutamate amperometric biosensor immobilized with a photo-crosslinkable polymer membrane. Sensors Actuators B Chem 122:195–203. https://doi.org/10.1016/j.snb.2006.05.022

    Article  CAS  Google Scholar 

  105. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper Oxidases and Oxygenases. Chem Rev 96:2563–2606. https://doi.org/10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  106. Komori H, Higuchi Y (2015) Structural insights into the O 2 reduction mechanism of multicopper oxidase. J Biochem 158:293–298. https://doi.org/10.1093/jb/mvv079

    Article  CAS  PubMed  Google Scholar 

  107. Shleev S, Tkac J, Christenson A et al (2005) Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron 20:2517–2554. https://doi.org/10.1016/j.bios.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  108. De Poulpiquet A, Kjaergaard CH, Rouhana J et al (2017) Mechanism of Chloride Inhibition of Bilirubin Oxidases and Its Dependence on Potential and pH. ACS Catal 7:3916–3923. https://doi.org/10.1021/acscatal.7b01286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tsujimura S, Tatsumi H, Ogawa J et al (2001) Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2′-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 496:69–75. https://doi.org/10.1016/S0022-0728(00)00239-4

    Article  CAS  Google Scholar 

  110. Nakagawa T, Tsujimura S, Kano K, Ikeda T (2003) Bilirubin Oxidase and [Fe(CN) 6] 3 −/4 − Modified Electrode Allowing Diffusion-controlled Reduction of O 2 to Water at pH 7.0. Chem Lett 32:54–55. https://doi.org/10.1246/cl.2003.54

    Article  CAS  Google Scholar 

  111. Tsujimura S, Kawaharada M, Nakagawa T et al (2003) Mediated bioelectrocatalytic O2 reduction to water at highly positive electrode potentials near neutral pH. Electrochem Commun 5:138–141. https://doi.org/10.1016/S1388-2481(03)00003-1

    Article  CAS  Google Scholar 

  112. Durand F, Kjaergaard CH, Suraniti E et al (2012) Bilirubin oxidase from Bacillus pumilus: A promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosens Bioelectron 35:140–146. https://doi.org/10.1016/j.bios.2012.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Torrinha Á, Montenegro MCBSM, Araújo AN (2019) Conjugation of glucose oxidase and bilirubin oxidase bioelectrodes as biofuel cell in a finger-powered microfluidic platform. Electrochim Acta 318:922–930. https://doi.org/10.1016/j.electacta.2019.06.140

    Article  CAS  Google Scholar 

  114. Liu M, Wen Y, Li D et al (2011) A stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene)–single walled carbon nanotubes/ascorbate oxidase/nafion films for detection of L-ascorbic acid. Sensors Actuators B Chem 159:277–285. https://doi.org/10.1016/j.snb.2011.07.005

    Article  CAS  Google Scholar 

  115. Dodevska T, Horozova E, Dimcheva N (2013) Electrochemical behavior of ascorbate oxidase immobilized on graphite electrode modified with Au-nanoparticles. Mater Sci Eng, B 178:1497–1502. https://doi.org/10.1016/j.mseb.2013.08.012

    Article  CAS  Google Scholar 

  116. Shoham B, Migron Y, Riklin A et al (1995) A bilirubin biosensor based on a multilayer network enzyme electrode. Biosens Bioelectron 10:341–352. https://doi.org/10.1016/0956-5663(95)96852-P

    Article  CAS  Google Scholar 

  117. Göbel G, Dietz T, Lisdat F (2010) Bienzyme Sensor Based on an Oxygen Reducing Bilirubin Oxidase Electrode. Electroanalysis 22:1581–1585. https://doi.org/10.1002/elan.200900540

    Article  CAS  Google Scholar 

  118. Rodríguez-Delgado MM, Alemán-Nava GS, Rodríguez-Delgado JM et al (2015) Laccase-based biosensors for detection of phenolic compounds. TrAC Trends Anal Chem 74:21–45. https://doi.org/10.1016/j.trac.2015.05.008

    Article  CAS  Google Scholar 

  119. Zhang Y, Lv Z, Zhou J et al (2018) Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl Microbiol Biotechnol 102:10409–10423. https://doi.org/10.1007/s00253-018-9421-7

    Article  CAS  PubMed  Google Scholar 

  120. Castrovilli MC, Bolognesi P, Chiarinelli J et al (2019) The convergence of forefront technologies in the design of laccase-based biosensors – An update. TrAC Trends Anal Chem 119:115615. https://doi.org/10.1016/j.trac.2019.07.026

    Article  CAS  Google Scholar 

  121. Xu F (1997) Effects of Redox Potential and Hydroxide Inhibition on the pH Activity Profile of Fungal Laccases. J Biol Chem 272:924–928. https://doi.org/10.1074/jbc.272.2.924

    Article  CAS  PubMed  Google Scholar 

  122. Kim H-H, Zhang Y, Heller A (2004) Bilirubin Oxidase Label for an Enzyme-Linked Affinity Assay with O 2 as Substrate in a Neutral pH NaCl Solution. Anal Chem 76:2411–2414. https://doi.org/10.1021/ac035487j

    Article  CAS  PubMed  Google Scholar 

  123. Pita M, Gutierrez-Sanchez C, Toscano MD et al (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74. https://doi.org/10.1016/j.bioelechem.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  124. Skoronski E, Souza DH, Ely C et al (2017) Immobilization of laccase from Aspergillus oryzae on graphene nanosheets. Int J Biol Macromol 99:121–127. https://doi.org/10.1016/j.ijbiomac.2017.02.076

    Article  CAS  PubMed  Google Scholar 

  125. Santucci R, Ferri T, Morpurgo L et al (1998) Unmediated heterogeneous electron transfer reaction of ascorbate oxidase and laccase at a gold electrode. Biochem J 332:611–615. https://doi.org/10.1042/bj3320611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Akyilmaz E, Dinçkaya E (1999) A new enzyme electrode based on ascorbate oxidase immobilized in gelatin for specific determination of l-ascorbic acid. Talanta 50:87–93. https://doi.org/10.1016/S0039-9140(99)00107-1

    Article  CAS  PubMed  Google Scholar 

  127. Wang X, Watanabe H, Uchiyama S (2008) Amperometric l-ascorbic acid biosensors equipped with enzyme micelle membrane. Talanta 74:1681–1685. https://doi.org/10.1016/j.talanta.2007.09.008

    Article  CAS  PubMed  Google Scholar 

  128. Chauhan N, Dahiya T, Priyanka Pundir CS (2010) Fabrication of an amperometric ascorbate biosensor using egg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase. J Mol Catal B Enzym 67:66–71. https://doi.org/10.1016/j.molcatb.2010.07.007

    Article  CAS  Google Scholar 

  129. Zhang M, Liu K, Xiang L et al (2007) Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain. Anal Chem 79:6559–6565. https://doi.org/10.1021/ac0705871

    Article  CAS  PubMed  Google Scholar 

  130. Rekha K, Gouda MD, Thakur MS, Karanth NG (2000) Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring. Biosens Bioelectron 15:499–502. https://doi.org/10.1016/S0956-5663(00)00077-4

    Article  CAS  PubMed  Google Scholar 

  131. Pisoschi AM, Pop A, Serban AI, Fafaneata C (2014) Electrochemical methods for ascorbic acid determination. Electrochim Acta 121:443–460. https://doi.org/10.1016/j.electacta.2013.12.127

    Article  CAS  Google Scholar 

  132. Tanaka N, Murao S (1983) Difference between Various Copper-containing Enzymes (Polyporus Laccase, Mushroom Tyrosinase and Cucumber Ascorbate Oxidase) and Bilirubin Oxidase. Agric Biol Chem 47:1627–1628. https://doi.org/10.1271/bbb1961.47.1627

    Article  CAS  Google Scholar 

  133. Mizutani K, Toyoda M, Sagara K et al (2010) X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66:765–770. https://doi.org/10.1107/S1744309110018828

    Article  CAS  Google Scholar 

  134. Mano N (2012) Features and applications of bilirubin oxidases. Appl Microbiol Biotechnol 96:301–307. https://doi.org/10.1007/s00253-012-4312-9

    Article  CAS  PubMed  Google Scholar 

  135. Mano N, Edembe L (2013) Bilirubin oxidases in bioelectrochemistry: Features and recent findings. Biosens Bioelectron 50:478–485. https://doi.org/10.1016/j.bios.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  136. Tonda-Mikiela P, Habrioux A, Boland S et al (2011) Oxygen Electroreduction Catalyzed by Bilirubin Oxidase Does Not Release Hydrogen Peroxide. Electrocatalysis 2:268–272. https://doi.org/10.1007/s12678-011-0062-1

    Article  CAS  Google Scholar 

  137. Tsujimura S, Kano K, Ikeda T (2005) Bilirubin oxidase in multiple layers catalyzes four-electron reduction of dioxygen to water without redox mediators. J Electroanal Chem 576:113–120. https://doi.org/10.1016/j.jelechem.2004.09.031

    Article  CAS  Google Scholar 

  138. Shleev S, El Kasmi A, Ruzgas T, Gorton L (2004) Direct heterogeneous electron transfer reactions of bilirubin oxidase at a spectrographic graphite electrode. Electrochem Commun 6:934–939. https://doi.org/10.1016/j.elecom.2004.07.008

    Article  CAS  Google Scholar 

  139. Brocato S, Lau C, Atanassov P (2012) Mechanistic study of direct electron transfer in bilirubin oxidase. Electrochim Acta 61:44–49. https://doi.org/10.1016/j.electacta.2011.11.074

    Article  CAS  Google Scholar 

  140. Li D an, Okajima T, Mao L, Ohsaka T (2014) Bioelectrocatalytic oxygen reduction reaction by bilirubin oxidase adsorbed on glassy carbon and edge-plane pyrolytic graphite electrodes: Effect of redox mediators. Int J Electrochem Sci 9:1390–1398

    Google Scholar 

  141. Klemm J, Prodromidis MI, Karayannis MI (2000) An Enzymic Method for the Determination of Bilirubin Using an Oxygen Electrode. Electroanalysis 12:292–295. https://doi.org/10.1002/(SICI)1521-4109(20000301)12:4%3c292:AID-ELAN292%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  142. Kannan P, Chen H, Lee VT-W, Kim D-H (2011) Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol–gel film modified electrode. Talanta 86:400–407. https://doi.org/10.1016/j.talanta.2011.09.034

    Article  CAS  PubMed  Google Scholar 

  143. Durand F, Gounel S, Kjaergaard CH et al (2012) Bilirubin oxidase from Magnaporthe oryzae: an attractive new enzyme for biotechnological applications. Appl Microbiol Biotechnol 96:1489–1498. https://doi.org/10.1007/s00253-012-3926-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Perlman JM, Volpe JJ (2018) Bilirubin. In: Volpe’s Neurology of the Newborn, Sixth Edit. Elsevier, pp 730–762.e4

    Google Scholar 

  145. Hooda V, Gahlaut A, Gothwal A, Hooda V (2017) Bilirubin enzyme biosensor: potentiality and recent advances towards clinical bioanalysis. Biotechnol Lett 39:1453–1462. https://doi.org/10.1007/s10529-017-2396-0

    Article  CAS  PubMed  Google Scholar 

  146. Ngashangva L, Bachu V, Goswami P (2019) Development of new methods for determination of bilirubin. J Pharm Biomed Anal 162:272–285. https://doi.org/10.1016/j.jpba.2018.09.034

    Article  CAS  PubMed  Google Scholar 

  147. Mano N, Fernandez JL, Kim Y et al (2003) Oxygen Is Electroreduced to Water on a “Wired” Enzyme Electrode at a Lesser Overpotential than on Platinum. J Am Chem Soc 125:15290–15291. https://doi.org/10.1021/ja038285d

    Article  CAS  PubMed  Google Scholar 

  148. Nelson DL, Cox MM (2000) Lehninger Principles of Biochemistry, 6th edn. Worth Publishers, New York

    Google Scholar 

  149. Bollella P, Gorton L, Antiochia R (2018) Direct Electron Transfer of Dehydrogenases for Development of 3rd Generation Biosensors and Enzymatic Fuel Cells. Sensors 18:1319. https://doi.org/10.3390/s18051319

    Article  CAS  Google Scholar 

  150. No Title. https://www.fortunebusinessinsights.com/

  151. Heller A, Feldman B (2008) Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem Rev 108:2482–2505. https://doi.org/10.1021/cr068069y

    Article  CAS  PubMed  Google Scholar 

  152. Cardosi M, Liu Z (2012) amperometric glucose sensors for whole blood measurement based on dehydrogenase enzymes. In: Dehydrogenases. InTech, pp 116–124

    Google Scholar 

  153. Bartlett PN (2008) Bioelectrochemistry: Fundamentals. Experimental Techniques and Applications. John Wiley & Sons Ltd, Chichester, UK

    Book  Google Scholar 

  154. Katakis I, Domínguez E (1997) Catalytic Electrooxidation of NADH for Dehydrogenase Amperometric Biosensors. Mikrochim Acta 126:11–32

    Article  CAS  Google Scholar 

  155. Gorton L, Csöregi E, Domínguez E et al (1991) Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes. Anal Chim Acta 250:203–248. https://doi.org/10.1016/0003-2670(91)85072-Z

    Article  CAS  Google Scholar 

  156. Tse DC-S, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 50:1315–1318. https://doi.org/10.1021/ac50031a030

    Article  CAS  Google Scholar 

  157. Munteanu F, Mano N, Kuhn A, Gorton L (2004) NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. J Electroanal Chem 564:167–178. https://doi.org/10.1016/j.jelechem.2003.10.034

    Article  CAS  Google Scholar 

  158. Vasilescu A, Andreescu S, Bala C et al (2003) Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosens Bioelectron 18:781–790. https://doi.org/10.1016/S0956-5663(03)00044-7

    Article  CAS  PubMed  Google Scholar 

  159. Jiang X, Zhu L, Yang D et al (2009) Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola’s Blue/Ordered Mesoporous Carbon Electrode. Electroanalysis 21:1617–1623. https://doi.org/10.1002/elan.200804586

    Article  CAS  Google Scholar 

  160. Radoi A, Compagnone D (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134. https://doi.org/10.1016/j.bioelechem.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  161. Tsai Y-C, Chen S-Y, Liaw H-W (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sensors Actuators B Chem 125:474–481. https://doi.org/10.1016/j.snb.2007.02.052

  162. Tang L, Zhu Y, Xu L et al (2007) Amperometric glutamate biosensor based on self-assembling glutamate dehydrogenase and dendrimer-encapsulated platinum nanoparticles onto carbon nanotubes. Talanta 73:438–443. https://doi.org/10.1016/j.talanta.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  163. Jena BK, Raj CR (2006) Electrochemical Biosensor Based on Integrated Assembly of Dehydrogenase Enzymes and Gold Nanoparticles. Anal Chem 78:6332–6339. https://doi.org/10.1021/ac052143f

    Article  CAS  PubMed  Google Scholar 

  164. Wooten M, Gorski W (2010) Facilitation of NADH Electro-oxidation at Treated Carbon Nanotubes. Anal Chem 82:1299–1304. https://doi.org/10.1021/ac902301b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhou H, Zhang Z, Yu P et al (2010) Noncovalent Attachment of NAD + Cofactor onto Carbon Nanotubes for Preparation of Integrated Dehydrogenase-Based Electrochemical Biosensors. Langmuir 26:6028–6032. https://doi.org/10.1021/la903799n

    Article  CAS  PubMed  Google Scholar 

  166. Azzouzi S, Rotariu L, Benito AM et al (2015) A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens Bioelectron 69:280–286. https://doi.org/10.1016/j.bios.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  167. Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry, tetrahedron organic chemistry series

    Google Scholar 

  168. Yuan M, Kummer MJ, Milton RD et al (2019) Efficient NADH Regeneration by a Redox Polymer-Immobilized Enzymatic System. ACS Catal 9:5486–5495. https://doi.org/10.1021/acscatal.9b00513

    Article  CAS  Google Scholar 

  169. Ruppert R, Steckhan E (1989) Efficient photoelectrochemical in-situ regeneration of NAD(P) + coupled to enzymatic oxidation of alcohols. J Chem Soc Perkin Trans 2:811. https://doi.org/10.1039/p29890000811

    Article  Google Scholar 

  170. Bollella P, Gorton L, Ludwig R, Antiochia R (2017) A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva. Sensors (Basel) 17:2033–2036. https://doi.org/10.3390/s17081912

    Article  CAS  Google Scholar 

  171. Puri D (2006) Textbook of Medical Biochemistry, 2nd edn. Reed Elsevier India, New Delhi

    Google Scholar 

  172. Laurinavicius V, Razumiene J, Ramanavicius A, Ryabov AD (2004) Wiring of PQQ–dehydrogenases. Biosens Bioelectron 20:1217–1222. https://doi.org/10.1016/j.bios.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  173. Ferri S, Kojima K, Sode K (2011) Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird’s Eye View of Glucose Sensing Enzymes. J Diabetes Sci Technol 5:1068–1076. https://doi.org/10.1177/193229681100500507

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sode K, Ootera T, Shirahane M et al (2000) Increasing the thermal stability of the water-soluble pyrroloquinoline quinone glucose dehydrogenase by single amino acid replacement. Enzyme Microb Technol 26:491–496. https://doi.org/10.1016/S0141-0229(99)00196-9

    Article  CAS  PubMed  Google Scholar 

  175. Igarashi S, Sode K (2003) Stabilization of Quaternary Structure of Water-Soluble Quinoprotein Glucose Dehydrogenase. Mol Biotechnol 24:97–104. https://doi.org/10.1385/MB:24:2:97

    Article  CAS  PubMed  Google Scholar 

  176. Tanaka S, Igarashi S, Ferri S, Sode K (2005) Increasing stability of water-soluble PQQ glucose dehydrogenase by increasing hydrophobic interaction at dimeric interface. BMC Biochem 6:1. https://doi.org/10.1186/1471-2091-6-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sode K, Igarashi S, Morimoto A, Yoshida H (2002) Construction of Engineered Water-soluble PQQ Glucose Dehydrogenase with Improved Substrate Specificity. Biocatal Biotransformation 20:405–412. https://doi.org/10.1080/1024242021000058694

    Article  CAS  Google Scholar 

  178. Igarashi S, Hirokawa T, Sode K (2004) Engineering PQQ glucose dehydrogenase with improved substrate specificity. Biomol Eng 21:81–89. https://doi.org/10.1016/j.bioeng.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  179. Hamamatsu N, Suzumura A, Nomiya Y et al (2006) Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution. Appl Microbiol Biotechnol 73:607–617. https://doi.org/10.1007/s00253-006-0521-4

    Article  CAS  PubMed  Google Scholar 

  180. Tsujimura S, Kojima S, Kano K et al (2006) Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Biosci Biotechnol Biochem 70:654–659. https://doi.org/10.1271/bbb.70.654

    Article  CAS  PubMed  Google Scholar 

  181. Okuda-Shimazaki J, Yoshida H, Sode K (2020) FAD dependent glucose dehydrogenases – Discovery and engineering of representative glucose sensing enzymes -. Bioelectrochemistry 132:107414. https://doi.org/10.1016/j.bioelechem.2019.107414

    Article  CAS  PubMed  Google Scholar 

  182. Ludwig R, Harreither W, Tasca F, Gorton L (2010) Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. ChemPhysChem 11:2674–2697. https://doi.org/10.1002/cphc.201000216

    Article  CAS  PubMed  Google Scholar 

  183. Ikeda T, Fushimi F, Miki K, Senda M (1988) Direct Bioelectrocatalysis at Electrodes Modified with D-Gluconate Dehydrogenase. Agric Biol Chem 52:2655–2658. https://doi.org/10.1080/00021369.1988.10869104

    Article  CAS  Google Scholar 

  184. Ikeda T, Matsushita F, Senda M (1991) Amperometric fructose sensor based on direct bioelectrocatalysis. Biosens Bioelectron 6:299–304. https://doi.org/10.1016/0956-5663(91)85015-O

    Article  CAS  Google Scholar 

  185. Ikeda T, Miyaoka S, Matsushita F et al (1992) Direct Bioelectrocatalysis at Metal and Carbon Electrodes Modified with Adsorbed D-Gluconate Dehydrogenase or Adsorbed Alcohol Dehydrogenase from Bacterial Membranes. Chem Lett 21:847–850. https://doi.org/10.1246/cl.1992.847

    Article  Google Scholar 

  186. Ikeda T, Kobayashi D, Matsushita F et al (1993) Bioelectrocatalysis at electrodes coated with alcohol dehydrogenase, a quinohemoprotein with heme c serving as a built-in mediator. J Electroanal Chem 361:221–228. https://doi.org/10.1016/0022-0728(93)87058-4

    Article  CAS  Google Scholar 

  187. Gorton L, Lindgren A, Larsson T et al (1999) Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta 400:91–108. https://doi.org/10.1016/S0003-2670(99)00610-8

    Article  CAS  Google Scholar 

  188. Lindgren A, Larsson T, Ruzgas T, Gorton L (2000) Direct electron transfer between the heme of cellobiose dehydrogenase and thiol modified gold electrodes. J Electroanal Chem 494:105–113. https://doi.org/10.1016/S0022-0728(00)00326-0

    Article  CAS  Google Scholar 

  189. Samejima M, Phillips RS, Eriksson K-EL (1992) Cellobiose oxidase from Phanerochaete chrysosporium Stopped-flow spectrophotometric analysis of pH-dependent reduction. FEBS Lett 306:165–168. https://doi.org/10.1016/0014-5793(92)80991-O

    Article  CAS  PubMed  Google Scholar 

  190. Hyde SM, Wood PM (1996) Kinetic and antigenic similarities for cellobiose dehydrogenase from the brown rot fungus Coniophora puteana and the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 145:439–444. https://doi.org/10.1016/S0378-1097(96)00448-X

    Article  CAS  Google Scholar 

  191. Šakinytė I, Barkauskas J, Gaidukevič J, Razumienė J (2015) Thermally reduced graphene oxide: The study and use for reagentless amperometric d-fructose biosensors. Talanta 144:1096–1103. https://doi.org/10.1016/j.talanta.2015.07.072

    Article  CAS  PubMed  Google Scholar 

  192. Tsujimura S, Nishina A, Kamitaka Y, Kano K (2009) Coulometric d-Fructose Biosensor Based on Direct Electron Transfer Using d-Fructose Dehydrogenase. Anal Chem 81:9383–9387. https://doi.org/10.1021/ac901771t

    Article  CAS  PubMed  Google Scholar 

  193. Ramanavicius A, Habermüller K, Csöregi E et al (1999) Polypyrrole-Entrapped Quinohemoprotein Alcohol Dehydrogenase. Evidence for Direct Electron Transfer via Conducting-Polymer Chains. Anal Chem 71:3581–3586. https://doi.org/10.1021/ac981201c

    Article  CAS  PubMed  Google Scholar 

  194. Treu BL, Sokic-Lazic D, Minteer S (2010) Bioelectrocatalysis of pyruvate with PQQ-dependent pyruvate dehydrogenase. pp 1–11

    Google Scholar 

  195. Treu BL, Minteer SD (2008) Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochemistry 74:73–77. https://doi.org/10.1016/j.bioelechem.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  196. Antiochia R, Lavagnini I (2006) Alcohol Biosensor Based on the Immobilization of Meldola Blue and Alcohol Dehydrogenase into a Carbon Nanotube Paste Electrode. Anal Lett 39:1643–1655. https://doi.org/10.1080/00032710600713537

    Article  CAS  Google Scholar 

  197. Santos AS, Pereira AC, Durán N, Kubota LT (2006) Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola’s Blue on multi-wall carbon nanotube. Electrochim Acta 52:215–220. https://doi.org/10.1016/j.electacta.2006.04.060

    Article  CAS  Google Scholar 

  198. Kim D-M, Kim M, Reddy SS et al (2013) Electron-Transfer Mediator for a NAD-Glucose Dehydrogenase-Based Glucose Sensor. Anal Chem 85:11643–11649. https://doi.org/10.1021/ac403217t

    Article  CAS  PubMed  Google Scholar 

  199. Hughes G, Pemberton RM, Fielden PR, Hart JP (2015) Development of a novel reagentless, screen-printed amperometric biosensor based on glutamate dehydrogenase and NAD + , integrated with multi-walled carbon nanotubes for the determination of glutamate in food and clinical applications. Sensors Actuators B Chem 216:614–621. https://doi.org/10.1016/j.snb.2015.04.066

  200. Safina G, Ludwig R, Gorton L (2010) A simple and sensitive method for lactose detection based on direct electron transfer between immobilised cellobiose dehydrogenase and screen-printed carbon electrodes. Electrochim Acta 55:7690–7695. https://doi.org/10.1016/j.electacta.2009.10.052

    Article  CAS  Google Scholar 

  201. Tavahodi M, Ortiz R, Schulz C et al (2017) Direct Electron Transfer of Cellobiose Dehydrogenase on Positively Charged Polyethyleneimine Gold Nanoparticles. ChemPlusChem 82:546–552. https://doi.org/10.1002/cplu.201600453

    Article  CAS  PubMed  Google Scholar 

  202. Zafar MN, Safina G, Ludwig R, Gorton L (2012) Characteristics of third-generation glucose biosensors based on Corynascus thermophilus cellobiose dehydrogenase immobilized on commercially available screen-printed electrodes working under physiological conditions. Anal Biochem 425:36–42. https://doi.org/10.1016/j.ab.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  203. Bollella P, Hibino Y, Kano K et al (2018) Highly Sensitive Membraneless Fructose Biosensor Based on Fructose Dehydrogenase Immobilized onto Aryl Thiol Modified Highly Porous Gold Electrode: Characterization and Application in Food Samples. Anal Chem 90:12131–12136. https://doi.org/10.1021/acs.analchem.8b03093

    Article  CAS  PubMed  Google Scholar 

  204. Michel C, Battaglia-Brunet F, Minh CT et al (2003) Amperometric cytochrome c3-based biosensor for chromate determination. Biosens Bioelectron 19:345–352. https://doi.org/10.1016/S0956-5663(03)00191-X

    Article  CAS  PubMed  Google Scholar 

  205. Lin R, Bayachou M, Greaves J, Farmer PJ (1997) Nitrite Reduction by Myoglobin in Surfactant Films. J Am Chem Soc 119:12689–12690. https://doi.org/10.1021/ja972529a

    Article  CAS  Google Scholar 

  206. Almeida MG, Serra A, Silveira CM, Moura JJG (2010) Nitrite Biosensing via Selective Enzymes—A Long but Promising Route. Sensors 10:11530–11555. https://doi.org/10.3390/s101211530

    Article  CAS  PubMed  Google Scholar 

  207. Noh H-B, Chandra P, Moon JO, Shim Y-B (2012) In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials 33:2600–2607. https://doi.org/10.1016/j.biomaterials.2011.12.026

    Article  CAS  PubMed  Google Scholar 

  208. Hooda V, Sachdeva V, Chauhan N (2016) Nitrate quantification: recent insights into enzyme-based methods. Rev Anal Chem 35:99. https://doi.org/10.1515/revac-2016-0002

    Article  CAS  Google Scholar 

  209. Sohail M, Adeloju SB (2016) Nitrate biosensors and biological methods for nitrate determination. Talanta 153:83–98. https://doi.org/10.1016/j.talanta.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  210. Sohail M, Adeloju SB (2009) Fabrication of Redox-Mediator Supported Potentiometric Nitrate Biosensor with Nitrate Reductase. Electroanalysis 21:1411–1418. https://doi.org/10.1002/elan.200804542

    Article  CAS  Google Scholar 

  211. Wang X, Dzyadevych SV, Chovelon J-M et al (2006) Development of a conductometric nitrate biosensor based on Methyl viologen/Nafion® composite film. Electrochem Commun 8:201–205. https://doi.org/10.1016/j.elecom.2005.11.006

    Article  CAS  Google Scholar 

  212. Adeloju SB, Sohail M (2011) Azure A Mediated Polypyrrole-Based Amperometric Nitrate Biosensor. Electroanalysis 23:987–996. https://doi.org/10.1002/elan.201000386

    Article  CAS  Google Scholar 

  213. Serra AS, Jorge SR, Silveira CM et al (2011) Cooperative use of cytochrome cd1 nitrite reductase and its redox partner cytochrome c552 to improve the selectivity of nitrite biosensing. Anal Chim Acta 693:41–46. https://doi.org/10.1016/j.aca.2011.03.029

    Article  CAS  PubMed  Google Scholar 

  214. Silveira CM, Baur J, Holzinger M et al (2010) Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-walled Carbon Nanotube Modified Electrodes. Electroanalysis 22:2973–2978. https://doi.org/10.1002/elan.201000363

    Article  CAS  Google Scholar 

  215. Gomes FO, Maia LB, Cordas C et al (2019) Electroanalytical characterization of the direct Marinobacter hydrocarbonoclasticus nitric oxide reductase-catalysed nitric oxide and dioxygen reduction. Bioelectrochemistry 125:8–14. https://doi.org/10.1016/j.bioelechem.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  216. Cheng H, Abo M, Okubo A (2003) Development of dimethyl sulfoxide biosensor using a mediator immobilized enzyme electrode. Analyst 128:724. https://doi.org/10.1039/b212917e

    Article  CAS  PubMed  Google Scholar 

  217. Okeke BC, Ma G, Cheng Q et al (2007) Development of a perchlorate reductase-based biosensor for real time analysis of perchlorate in water. J Microbiol Methods 68:69–75. https://doi.org/10.1016/j.mimet.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  218. Naal Z, Park J-H, Bernhard S et al (2002) Amperometric TNT Biosensor Based on the Oriented Immobilization of a Nitroreductase Maltose Binding Protein Fusion. Anal Chem 74:140–148. https://doi.org/10.1021/ac010596o

    Article  CAS  PubMed  Google Scholar 

  219. Pandiaraj M, Benjamin AR, Madasamy T et al (2014) A cost-effective volume miniaturized and microcontroller based cytochrome c assay. Sensors Actuators A Phys 220:290–297. https://doi.org/10.1016/j.sna.2014.10.018

    Article  CAS  Google Scholar 

  220. Plumeré N (2013) Interferences from oxygen reduction reactions in bioelectroanalytical measurements: the case study of nitrate and nitrite biosensors. Anal Bioanal Chem 405:3731–3738. https://doi.org/10.1007/s00216-013-6827-z

    Article  CAS  PubMed  Google Scholar 

  221. Cui Y, Barford JP, Renneberg R (2006) Development of a bienzyme system for the electrochemical determination of nitrate in ambient air. Anal Bioanal Chem 386:1567–1570. https://doi.org/10.1007/s00216-006-0673-1

    Article  CAS  PubMed  Google Scholar 

  222. Abo M, Ogasawara Y, Tanaka Y et al (2003) Amperometric dimethyl sulfoxide sensor using dimethyl sulfoxide reductase from Rhodobacter sphaeroides. Biosens Bioelectron 18:735–739. https://doi.org/10.1016/S0956-5663(03)00043-5

    Article  CAS  PubMed  Google Scholar 

  223. Monteiro T, Rodrigues PR, Gonçalves AL et al (2015) Construction of effective disposable biosensors for point of care testing of nitrite. Talanta 142:246–251. https://doi.org/10.1016/j.talanta.2015.04.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Monteiro T, Gomes S, Jubete E et al (2019) A quasi-reagentless point-of-care test for nitrite and unaffected by oxygen and cyanide. Sci Rep 9:2622. https://doi.org/10.1038/s41598-019-39209-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B Biol Sci 368:20130164. https://doi.org/10.1098/rstb.2013.0164

    Article  CAS  Google Scholar 

  226. Dejam A, Hunter CJ, Schechter AN, Gladwin MT (2004) Emerging role of nitrite in human biology. Blood Cells Mol Dis 32:423–429. https://doi.org/10.1016/j.bcmd.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  227. Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric Oxide as a Unique Bioactive Signaling Messenger in Physiology and Pathophysiology. J Biomed Biotechnol 2004:227–237. https://doi.org/10.1155/S1110724304402034

    Article  PubMed  PubMed Central  Google Scholar 

  228. Hille R, Hall J, Basu P (2014) The Mononuclear Molybdenum Enzymes. Chem Rev 114:3963–4038. https://doi.org/10.1021/cr400443z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Maia LB, Moura I, Moura JJG (2016) Chapter 1. molybdenum and tungsten-containing enzymes: an overview. in: molybdenum and tungsten enzymes: biochemistry. Royal Soc Chem pp 1–80

    Google Scholar 

  230. Jalalvand AR, Mahmoudi M, Goicoechea HC (2018) Developing a novel paper-based enzymatic biosensor assisted by digital image processing and first-order multivariate calibration for rapid determination of nitrate in food samples. RSC Adv 8:23411–23420. https://doi.org/10.1039/C8RA02792G

    Article  CAS  Google Scholar 

  231. Sachdeva V, Hooda V (2014) A new immobilization and sensing platform for nitrate quantification. Talanta 124:52–59. https://doi.org/10.1016/j.talanta.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  232. Sohail M, Adeloju SB (2008) Electroimmobilization of nitrate reductase and nicotinamide adenine dinucleotide into polypyrrole films for potentiometric detection of nitrate. Sensors Actuators B Chem 133:333–339. https://doi.org/10.1016/j.snb.2008.02.032

    Article  CAS  Google Scholar 

  233. Xuejiang W, Dzyadevych S, Chovelon J et al (2006) Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69:450–455. https://doi.org/10.1016/j.talanta.2005.10.014

    Article  CAS  PubMed  Google Scholar 

  234. Zhang K, Zhou H, Hu P, Lu Q (2019) The direct electrochemistry and bioelectrocatalysis of nitrate reductase at a gold nanoparticles/aminated graphene sheets modified glassy carbon electrode. RSC Adv 9:37207–37213. https://doi.org/10.1039/C9RA07082F

    Article  CAS  Google Scholar 

  235. Patolsky F, Katz E, Heleg-Shabtai V, Willner I (1998) A Crosslinked Microperoxidase-11 and Nitrate Reductase Monolayer on a Gold Electrode: An Integrated Electrically Contacted Electrode for the Bioelectrocatalyzed Reduction of NO3−. Chem - A Eur J 4:1068–1073. https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6%3c1068:AID-CHEM1068%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  236. Kirstein D, Kirstein L, Scheller F et al (1999) Amperometric nitrate biosensors on the basis of Pseudomonas stutzeri nitrate reductase. J Electroanal Chem 474:43–51. https://doi.org/10.1016/S0022-0728(99)00302-2

    Article  CAS  Google Scholar 

  237. Quan D, Shim JH, Kim JD et al (2005) Electrochemical Determination of Nitrate with Nitrate Reductase-Immobilized Electrodes under Ambient Air. Anal Chem 77:4467–4473. https://doi.org/10.1021/ac050198b

    Article  CAS  PubMed  Google Scholar 

  238. Can F, Korkut Ozoner S, Ergenekon P, Erhan E (2012) Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater Sci Eng, C 32:18–23. https://doi.org/10.1016/j.msec.2011.09.004

    Article  CAS  Google Scholar 

  239. Gokhale AA, Lu J, Weerasiri RR et al (2015) Amperometric Detection and Quantification of Nitrate Ions Using a Highly Sensitive Nanostructured Membrane Electrocodeposited Biosensor Array. Electroanalysis 27:1127–1137. https://doi.org/10.1002/elan.201400547

    Article  CAS  Google Scholar 

  240. Moura I, Moura JJG (2001) Structural aspects of denitrifying enzymes. Curr Opin Chem Biol 5:168–175. https://doi.org/10.1016/S1367-5931(00)00187-3

    Article  CAS  PubMed  Google Scholar 

  241. Einsle O, Kroneck PMH (2004) Structural basis of denitrification. Biol Chem 385:875–883. https://doi.org/10.1515/BC.2004.115

    Article  CAS  PubMed  Google Scholar 

  242. Astier Y, Canters GW, Davis JJ et al (2005) Sensing Nitrite through a Pseudoazurin-Nitrite Reductase Electron Transfer Relay. ChemPhysChem 6:1114–1120. https://doi.org/10.1002/cphc.200400384

    Article  CAS  PubMed  Google Scholar 

  243. Silveira CM, Almeida MG (2013) Small electron-transfer proteins as mediators in enzymatic electrochemical biosensors. Anal Bioanal Chem 405:3619–3635. https://doi.org/10.1007/s00216-013-6786-4

    Article  CAS  PubMed  Google Scholar 

  244. Silveira CM, Gomes SP, Araújo AN et al (2010) An efficient non-mediated amperometric biosensor for nitrite determination. Biosens Bioelectron 25:2026–2032. https://doi.org/10.1016/j.bios.2010.01.031

    Article  CAS  PubMed  Google Scholar 

  245. Silveira CM, Pimpão M, Pedroso HA et al (2013) Probing the surface chemistry of different oxidized MWCNT for the improved electrical wiring of cytochrome c nitrite reductase. Electrochem Commun 35:17–21. https://doi.org/10.1016/j.elecom.2013.07.027

    Article  CAS  Google Scholar 

  246. Gomes FO, Maia LB, Loureiro JA et al (2019) Biosensor for direct bioelectrocatalysis detection of nitric oxide using nitric oxide reductase incorporated in carboxylated single-walled carbon nanotubes/lipidic 3 bilayer nanocomposite. Bioelectrochemistry 127:76–86. https://doi.org/10.1016/j.bioelechem.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  247. Kaufmann P, Duffus BR, Mitrova B et al (2018) Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N -Oxide Reductase. Biochemistry 57:1130–1143. https://doi.org/10.1021/acs.biochem.7b01108

    Article  CAS  PubMed  Google Scholar 

  248. Schindelin H, Kisker C, Hilton J, et al (1996) Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination. Science (80-) 272:1615–1621. https://doi.org/10.1126/science.272.5268.1615

  249. Youngblut MD, Tsai C-L, Clark IC et al (2016) Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues. J Biol Chem 291:9190–9202. https://doi.org/10.1074/jbc.M116.714618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Yonehara H, Fujii S, Sato K et al (2007) Construction of a Dimethyl Sulfoxide Sensor Based on Dimethyl Sulfoxide Reductase Immobilized on a Au Film Electrode. Anal Sci 23:55–58. https://doi.org/10.2116/analsci.23.55

    Article  PubMed  Google Scholar 

  251. Timur S, Odaci D, Dincer A et al (2008) Biosensing approach for glutathione detection using glutathione reductase and sulfhydryl oxidase bienzymatic system. Talanta 74:1492–1497. https://doi.org/10.1016/j.talanta.2007.09.026

    Article  CAS  PubMed  Google Scholar 

  252. Yu J, Zhou C-Z (2007) Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins Struct Funct Bioinforma 68:972–979. https://doi.org/10.1002/prot.21354

    Article  CAS  Google Scholar 

  253. Willner I, Katz E, Riklin A, Kasher R (1992) Mediated electron transfer in gluthathione reductase organized in self-assembled monolayers on gold electrodes. J Am Chem Soc 114:10965–10966. https://doi.org/10.1021/ja00053a045

    Article  CAS  Google Scholar 

  254. Carano M, Cosnier S, Kordatos K et al (2002) A glutathione amperometric biosensor based on an amphiphilic fullerene redox mediator immobilised within an amphiphilic polypyrrole film. J Mater Chem 12:1996–2000. https://doi.org/10.1039/b201469f

    Article  CAS  Google Scholar 

  255. Corrêa CC, Santhiago M, Formiga ALB, Kubota LT (2013) In situ activated nanostructured platform for oxidized glutathione biosensing. Electrochim Acta 90:309–316. https://doi.org/10.1016/j.electacta.2012.12.046

    Article  CAS  Google Scholar 

  256. Crofts AR (2004) The Cytochrome bc 1 Complex: Function in the Context of Structure. Annu Rev Physiol 66:689–733. https://doi.org/10.1146/annurev.physiol.66.032102.150251

    Article  CAS  PubMed  Google Scholar 

  257. Santharaman P, Venkatesh KA, Vairamani K et al (2017) ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode. Biosens Bioelectron 90:410–417. https://doi.org/10.1016/j.bios.2016.10.039

    Article  CAS  PubMed  Google Scholar 

  258. Navaee A, Salimi A (2019) Enzyme-based electrochemical biosensors. In: Electrochemical Biosensors. Elsevier, pp 167–211

    Google Scholar 

  259. Colovic MB, Krstic DZ, Lazarevic-Pasti TD et al (2013) Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Curr Neuropharmacol 11:315–335. https://doi.org/10.2174/1570159X11311030006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Latip W, Knight VF, Abdul Halim N et al (2019) Microbial Phosphotriesterase: Structure, Function, and Biotechnological Applications. Catalysts 9:671. https://doi.org/10.3390/catal9080671

    Article  CAS  Google Scholar 

  261. Trojanowicz M (2002) Determination of Pesticides Using Electrochemical Enzymatic Biosensors. Electroanalysis 14:1311–1328. https://doi.org/10.1002/1521-4109(200211)14:19/20%3c1311:AID-ELAN1311%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  262. Pundir CS, Malik A, Preety (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348. https://doi.org/10.1016/j.bios.2019.111348

  263. Schöning MJ, Krause R, Block K et al (2003) A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sensors Actuators B Chem 95:291–296. https://doi.org/10.1016/S0925-4005(03)00426-X

    Article  CAS  Google Scholar 

  264. Lee JH, Park JY, Min K et al (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25:1566–1570. https://doi.org/10.1016/j.bios.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  265. Sahin A, Dooley K, Cropek DM et al (2011) A dual enzyme electrochemical assay for the detection of organophosphorus compounds using organophosphorus hydrolase and horseradish peroxidase. Sensors Actuators B Chem 158:353–360. https://doi.org/10.1016/j.snb.2011.06.034

    Article  CAS  Google Scholar 

  266. Mishra RK, Hubble LJ, Martín A et al (2017) Wearable Flexible and Stretchable Glove Biosensor for On-Site Detection of Organophosphorus Chemical Threats. ACS Sensors 2:553–561. https://doi.org/10.1021/acssensors.7b00051

    Article  CAS  PubMed  Google Scholar 

  267. Gahlaut A (2012) Electrochemical Biosensors for Determination of Organophosphorus Compounds: Review. Open J Appl Biosens 1:1–8. https://doi.org/10.4236/ojab.2012.11001

    Article  CAS  Google Scholar 

  268. Kaur N, Prabhakar N (2017) Current scenario in organophosphates detection using electrochemical biosensors. TrAC Trends Anal Chem 92:62–85. https://doi.org/10.1016/j.trac.2017.04.012

    Article  CAS  Google Scholar 

  269. Harel M, Aharoni A, Gaidukov L et al (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419. https://doi.org/10.1038/nsmb767

    Article  CAS  PubMed  Google Scholar 

  270. Draganov DI, Teiber JF, Speelman A et al (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247. https://doi.org/10.1194/jlr.M400511-JLR200

    Article  CAS  PubMed  Google Scholar 

  271. Ceron JJ, Tecles F, Tvarijonaviciute A (2014) Serum paraoxonase 1 (PON1) measurement: an update. BMC Vet Res 10:1–11. https://doi.org/10.1186/1746-6148-10-74

    Article  CAS  Google Scholar 

  272. Mackness M, Mackness B (2015) Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 567:12–21. https://doi.org/10.1016/j.gene.2015.04.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Furlong CE, Marsillach J, Jarvik GP, Costa LG (2016) Paraoxonases-1, -2 and -3: What are their functions? Chem Biol Interact 259:51–62. https://doi.org/10.1016/j.cbi.2016.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Khersonsky O, Tawfik DS (2005) Structure-Reactivity Studies of Serum Paraoxonase PON1 Suggest that Its Native Activity Is Lactonase. Biochemistry 44:6371–6382. https://doi.org/10.1021/bi047440d

    Article  CAS  PubMed  Google Scholar 

  275. Chen C, Yang K (2013) A liquid crystal biosensor for detecting organophosphates through the localized pH changes induced by their hydrolytic products. Sensors Actuators B Chem 181:368–374. https://doi.org/10.1016/j.snb.2013.01.036

    Article  CAS  Google Scholar 

  276. Wang J, Yokokawa M, Satake T, Suzuki H (2015) A micro IrO potentiometric sensor for direct determination of organophosphate pesticides. Sensors Actuators B Chem 220:859–863. https://doi.org/10.1016/j.snb.2015.05.115

    Article  CAS  Google Scholar 

  277. Ma B, Cheong L, Weng X et al (2018) Lipase@ZIF-8 nanoparticles-based biosensor for direct and sensitive detection of methyl parathion. Electrochim Acta 283:509–516. https://doi.org/10.1016/j.electacta.2018.06.176

    Article  CAS  Google Scholar 

  278. Wang Z, Ma B, Shen C, Cheong L-Z (2019) Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta 197:356–362. https://doi.org/10.1016/j.talanta.2019.01.052

    Article  CAS  PubMed  Google Scholar 

  279. Gangadhara Reddy K, Madhavi G, Kumara Swamy BE (2014) Mobilized lipase enzymatic biosensor for the determination of Chlorfenvinphos and Malathion in contaminated water samples: A voltammetric study. J Mol Liq 198:181–186. https://doi.org/10.1016/j.molliq.2014.06.019

    Article  CAS  Google Scholar 

  280. Arduini F, Guidone S, Amine A et al (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B Chem 179:201–208. https://doi.org/10.1016/j.snb.2012.10.016

    Article  CAS  Google Scholar 

  281. Cinti S, Minotti C, Moscone D et al (2017) Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosens Bioelectron 93:46–51. https://doi.org/10.1016/j.bios.2016.10.091

    Article  CAS  PubMed  Google Scholar 

  282. Kok FN, Hasirci V (2004) Determination of binary pesticide mixtures by an acetylcholinesterase–choline oxidase biosensor. Biosens Bioelectron 19:661–665. https://doi.org/10.1016/j.bios.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  283. Espinosa M, Atanasov P, Wilkins E (1999) Development of a disposable organophosphate biosensor. Electroanalysis 11:1055–1062. https://doi.org/10.1002/(SICI)1521-4109(199910)11:14%3c1055:AID-ELAN1055%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  284. Adeloju SB, Shaw SJ, Wallace GG (1997) Pulsed-amperometric detection of urea in blood samples on a conducting polypyrrole-urease biosensor. Anal Chim Acta 341:155–160. https://doi.org/10.1016/S0003-2670(96)00502-8

    Article  CAS  Google Scholar 

  285. Luo Y-C, Do J-S (2004) Urea biosensor based on PANi(urease)-Nafion®/Au composite electrode. Biosens Bioelectron 20:15–23. https://doi.org/10.1016/j.bios.2003.11.028

    Article  CAS  PubMed  Google Scholar 

  286. Bozgeyik İ, Şenel M, Çevik E, Abasıyanık MF (2011) A novel thin film amperometric urea biosensor based on urease-immobilized on poly(N-glycidylpyrrole-co-pyrrole). Curr Appl Phys 11:1083–1088. https://doi.org/10.1016/j.cap.2011.01.041

    Article  Google Scholar 

  287. Soares JC, Brisolari A, Rodrigues VDC et al (2012) Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. React Funct Polym 72:148–152. https://doi.org/10.1016/j.reactfunctpolym.2011.12.002

    Article  CAS  Google Scholar 

  288. Emami Meibodi AS, Haghjoo S (2014) Amperometric urea biosensor based on covalently immobilized urease on an electrochemically polymerized film of polyaniline containing MWCNTs. Synth Met 194:1–6. https://doi.org/10.1016/j.synthmet.2014.04.009

    Article  CAS  Google Scholar 

  289. Do J-S, Lin K-H (2016) Kinetics of urease inhibition-based amperometric biosensors for mercury and lead ions detection. J Taiwan Inst Chem Eng 63:25–32. https://doi.org/10.1016/j.jtice.2016.03.011

    Article  CAS  Google Scholar 

  290. Rodriguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19:1157–1167. https://doi.org/10.1016/j.bios.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  291. Domínguez-Renedo O, Alonso-Lomillo MA, Ferreira-Gonçalves L, Arcos-Martínez MJ (2009) Development of urease based amperometric biosensors for the inhibitive determination of Hg (II). Talanta 79:1306–1310. https://doi.org/10.1016/j.talanta.2009.05.043

    Article  CAS  PubMed  Google Scholar 

  292. Scott D, Cooney MJ, Liaw BY (2008) Sustainable current generation from the ammonia–polypyrrole interaction. J Mater Chem 18:3216. https://doi.org/10.1039/b800894a

    Article  CAS  Google Scholar 

  293. Phongphut A, Sriprachuabwong C, Wisitsoraat A et al (2013) A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination. Sensors Actuators B Chem 178:501–507. https://doi.org/10.1016/j.snb.2013.01.012

    Article  CAS  Google Scholar 

  294. Yücel A, Özcan HM, Sağıroğlu A (2016) A new multienzyme-type biosensor for triglyceride determination. Prep Biochem Biotechnol 46:78–84. https://doi.org/10.1080/10826068.2014.985833

    Article  CAS  PubMed  Google Scholar 

  295. Narwal V, Pundir CS (2017) An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzyme Microb Technol 100:11–16. https://doi.org/10.1016/j.enzmictec.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  296. Pundir CS, Aggarwal V (2017) Amperometric triglyceride bionanosensor based on nanoparticles of lipase, glycerol kinase, glycerol-3-phosphate oxidase. Anal Biochem 517:56–63. https://doi.org/10.1016/j.ab.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  297. Laurinavicius V, Kurtinaitiene B, Gureviciene V et al (1996) Amperometric glyceride biosensor. Anal Chim Acta 330:159–166. https://doi.org/10.1016/0003-2670(96)00114-6

    Article  CAS  Google Scholar 

  298. Solanki S, Pandey CM, Soni A et al (2016) An amperometric bienzymatic biosensor for the triglyceride tributyrin using an indium tin oxide electrode coated with electrophoretically deposited chitosan-wrapped nanozirconia. Microchim Acta 183:167–176. https://doi.org/10.1007/s00604-015-1618-1

    Article  CAS  Google Scholar 

  299. Diba FS, Kim S, Lee HJ (2015) Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 72:355–361. https://doi.org/10.1016/j.bios.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  300. Čadková M, Dvořáková V, Metelka R et al (2015) Alkaline phosphatase labeled antibody-based electrochemical biosensor for sensitive HE4 tumor marker detection. Electrochem Commun 59:1–4. https://doi.org/10.1016/j.elecom.2015.06.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Applied Molecular Biosciences Unit-UCIBIO, which is financed by national funds from FCT/MCTES (UID/Multi/04378/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728). CMS acknowledges the support from Project LISBOA-01-0145-FEDER-007660 (Microbiologia Molecular, Estrutural e Celular) funded by FEDER funds through COMPETE 2020-Programa Operacional Competitividade e Internacionalização (POCI) and from FCT- Fundação para a Ciência e a Tecnologia (PTDC/BIA-BFS/31026/2017). TM thanks the financial support from Fundação para a Ciência e Tecnologia (Fellowship PD/BD/109687/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriela Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, T., Zumpano, R., Silveira, C.M., Gabriela Almeida, M. (2021). Selective Enzymes at the Core of Advanced Electroanalytical Tools: The Bloom of Biosensors. In: Moura, J.J.G., Moura, I., Maia, L.B. (eds) Enzymes for Solving Humankind's Problems. Springer, Cham. https://doi.org/10.1007/978-3-030-58315-6_11

Download citation

Publish with us

Policies and ethics