Skip to main content

Impact of Base Dataset Design on Few-Shot Image Classification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12361))

Included in the following conference series:

Abstract

The quality and generality of deep image features is crucially determined by the data they have been trained on, but little is known about this often overlooked effect. In this paper, we systematically study the effect of variations in the training data by evaluating deep features trained on different image sets in a few-shot classification setting. The experimental protocol we define allows to explore key practical questions. What is the influence of the similarity between base and test classes? Given a fixed annotation budget, what is the optimal trade-off between the number of images per class and the number of classes? Given a fixed dataset, can features be improved by splitting or combining different classes? Should simple or diverse classes be annotated? In a wide range of experiments, we provide clear answers to these questions on the miniImageNet, ImageNet and CUB-200 benchmarks. We also show how the base dataset design can improve performance in few-shot classification more drastically than replacing a simple baseline by an advanced state of the art algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniou, A., Storkey, A.J.: Learning to learn via self-critique. In: NeurIPS (2019)

    Google Scholar 

  2. Birodkar, V., Mobahi, H., Bengio, S.: Semantic redundancies in image-classification datasets: The 10% you don’t need. arXiv preprint arXiv:1901.11409 (2019)

  3. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. arXiv preprint arXiv:1710.05381 (2017)

  4. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV (2018)

    Google Scholar 

  5. Chen, W., Liu, Y., Kira, Z., Wang, Y.F., Huang, J.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  6. Chitta, K., Alvarez, J.M., Haussmann, E., Farabet, C.: Less is more: an exploration of data redundancy with active dataset subsampling. arXiv preprint arXiv:1905.12737 (2019)

  7. Cohn, D., Ladner, R., Waibel, A.: Improving generalization with active learning. Mach. Learn. 15, 201–221 (1994)

    Google Scholar 

  8. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4), 364–366 (1977)

    Article  MathSciNet  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  10. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin based approach. arXiv preprint arXiv:1802.09841 (2018)

  11. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  12. Fan, Y., Tian, F., Qin, T., Liu, T.Y.: Neural data filter for bootstrapping stochastic gradient descent (2016)

    Google Scholar 

  13. Fellbaum, C.: WordNet: an electronic lexical database and some of its applications (1998)

    Google Scholar 

  14. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: ICML (2017)

    Google Scholar 

  15. Ge, W., Yu, Y.: Borrowing treasures from the wealthy: deep transfer learning through selective joint fine-tuning. In: CVPR (2017)

    Google Scholar 

  16. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: ICCV (2019)

    Google Scholar 

  17. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)

    Google Scholar 

  18. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: CVPR (2019)

    Google Scholar 

  19. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3018–3027 (2017)

    Google Scholar 

  20. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  21. Hilliard, N., Phillips, L., Howland, S., Yankov, A., Corley, C.D., Hodas, N.O.: Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint arXiv:1802.04376 (2018)

  22. Hu, S.X., et al.: Empirical bayes transductive meta-learning with synthetic gradients. In: ICLR (2019)

    Google Scholar 

  23. Huh, M., Agrawal, P., Efros, A.A.: What makes imagenet good for transfer learning? In: NeurIPS LSCVS 2016 Workshop (2016)

    Google Scholar 

  24. Katharopoulos, A., Fleuret, F.: Not all samples are created equal: deep learning with importance sampling. arXiv preprint arXiv:1803.00942 (2018)

  25. Kim, J., Kim, T., Kim, S., Yoo, C.D.: Edge-labeling graph neural network for few-shot learning. In: CVPR (2019)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  27. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)

    Google Scholar 

  28. Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR (2019)

    Google Scholar 

  29. Liu, Y., et al.: Learning to propagate labels: transductive propagation network for few-shot learning. In: ICLR (2019)

    Google Scholar 

  30. London, B.: A PAC-Bayesian analysis of randomized learning with application to stochastic gradient descent. In: NeurIPS (2017)

    Google Scholar 

  31. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  32. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: CVPR (2018)

    Google Scholar 

  33. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  34. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  35. Rusu, A.A., et al.: Meta-learning with latent embedding optimization. In: ICLR (2019)

    Google Scholar 

  36. Sablayrolles, A., Douze, M., Schmid, C., Jégou, H.: Déja vu: an empirical evaluation of the memorization properties of convnets. arXiv preprint arXiv:1809.06396 (2018)

  37. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: ICLR (2017)

    Google Scholar 

  38. Settles, B.: Active learning literature survey. Tech. rep. University of Wisconsin-Madison Department of Computer Sciences (2009)

    Google Scholar 

  39. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPR Workshops (2014)

    Google Scholar 

  40. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  41. Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn from few examples. In: ICLR (2020)

    Google Scholar 

  42. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  43. Vodrahalli, K., Li, K., Malik, J.: Are all training examples created equal? an empirical study. arXiv preprint arXiv:1811.12569 (2018)

  44. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  45. Wang, Y., Chao, W.L., Weinberger, K.Q., van der Maaten, L.: SimpleShot: revisiting nearest-neighbor classification for few-shot learning. arXiv preprint arXiv:1911.04623

  46. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)

    Google Scholar 

  47. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)

    Google Scholar 

  48. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: CVPR (2018)

    Google Scholar 

  49. Zhou, L., Cui, P., Jia, X., Yang, S., Tian, Q.: Learning to select base classes for few-shot classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4624–4633 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by ANR project EnHerit ANR-17-CE23-0008, project Rapid Tabasco. We thank Maxime Oquab, Diane Bouchacourt and Alexei Efros for helpful discussions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Othman Sbai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sbai, O., Couprie, C., Aubry, M. (2020). Impact of Base Dataset Design on Few-Shot Image Classification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12361. Springer, Cham. https://doi.org/10.1007/978-3-030-58517-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58517-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58516-7

  • Online ISBN: 978-3-030-58517-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics