Skip to main content

Adversarial Data Augmentation via Deformation Statistics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12374))

Included in the following conference series:

Abstract

Deep learning models have been successful in computer vision and medical image analysis. However, training these models frequently requires large labeled image sets whose creation is often very time and labor intensive, for example, in the context of 3D segmentations. Approaches capable of training deep segmentation networks with a limited number of labeled samples are therefore highly desirable. Data augmentation or semi-supervised approaches are commonly used to cope with limited labeled training data. However, the augmentation strategies for many existing approaches are either hand-engineered or require computationally demanding searches. To that end, we explore an augmentation strategy which builds statistical deformation models from unlabeled data via principal component analysis and uses the resulting statistical deformation space to augment the labeled training samples. Specifically, we obtain transformations via deep registration models. This allows for an intuitive control over plausible deformation magnitudes via the statistical model and, if combined with an appropriate deformation model, yields spatially regular transformations. To optimally augment a dataset we use an adversarial strategy integrated into our statistical deformation model. We demonstrate the effectiveness of our approach for the segmentation of knee cartilage from 3D magnetic resonance images. We show favorable performance to state-of-the-art augmentation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://nda.nih.gov/oai/.

References

  1. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Dig. Imaging 30(4), 449–459 (2017)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE TMI Trans. Med. Imaging 38, 1788–1800 (2019)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  6. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  7. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for medical image analysis and computer vision. In: Medical Imaging 2001: Image Processing, vol. 4322, pp. 236–248. International Society for Optics and Photonics (2001)

    Google Scholar 

  8. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised Learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_82

    Chapter  Google Scholar 

  10. Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation (2018)

    Google Scholar 

  11. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: A rotation and a translation suffice: Fooling CNNs with simple transformations (2017). arXiv preprint arXiv:1712.02779

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples (2014). arXiv preprint arXiv:1412.6572

  14. Hataya, R., Zdenek, J., Yoshizoe, K., Nakayama, H.: Faster AutoAugment: learning augmentation strategies using backpropagation (2019). arXiv preprint arXiv:1911.06987

  15. Ho, D., Liang, E., Stoica, I., Abbeel, P., Chen, X.: Population based augmentation: Efficient learning of augmentation policy schedules (2019). arXiv preprint arXiv:1905.05393

  16. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2007)

    Article  Google Scholar 

  17. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)

    Article  Google Scholar 

  18. Jendele, L., Skopek, O., Becker, A.S., Konukoglu, E.: Adversarial augmentation for enhancing classification of mammography images (2019). arXiv preprint arXiv:1902.07762

  19. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2016. Lecture Notes in Computer Science, vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

    Chapter  Google Scholar 

  20. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  21. Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep networks: analysis and improvement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4441–4449 (2018)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  23. Moeskops, P., Viergever, M.A., Mendrik, A.M., De Vries, L.S., Benders, M.J., Išgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  24. Paschali, M., et al.: Data augmentation with manifold exploring geometric transformations for increased performance and robustness (2019). arXiv preprint arXiv:1901.04420

  25. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  26. Risser, L., Vialard, F.X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Trans. Med. Imaging 30(10), 1746–1759 (2011)

    Article  Google Scholar 

  27. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  28. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  29. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  30. Shaham, U., Yamada, Y., Negahban, S.: Understanding adversarial training: increasing local stability of supervised models through robust optimization. Neurocomputing 307, 195–204 (2018)

    Article  Google Scholar 

  31. Shen, Z., Han, X., Xu, Z., Niethammer, M.: Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4224–4233 (2019)

    Google Scholar 

  32. Shen, Z., Vialard, F.X., Niethammer, M.: Region-specific diffeomorphic metric mapping (2019). arXiv preprint arXiv:1906.00139

  33. Shin, H.C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  34. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  35. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation (2019). arXiv preprint arXiv:1908.10454

  36. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97(2), 229–241 (2012)

    Article  MathSciNet  Google Scholar 

  37. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples (2018). arXiv preprint arXiv:1801.02612

  38. Xu, Z., Niethammer, M.: Deepatlas: joint semi-supervised learning of image registration and segmentation (2019). arXiv preprint arXiv:1904.08465

  39. Xu, Z., Shen, Z., Niethammer, M.: Contextual additive networks to efficiently boost 3D image segmentations. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 92–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_11

    Chapter  Google Scholar 

  40. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  41. Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational anatomy. NeuroImage 45(1), S40–S50 (2009)

    Article  Google Scholar 

  42. Zhang, X., Wang, Q., Zhang, J., Zhong, Z.: Adversarial AutoAugment (2019). arXiv preprint arXiv:1912.11188

  43. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8543–8553 (2019)

    Google Scholar 

  44. Zhou, X.Y., Guo, Y., Shen, M., Yang, G.Z.: Artificial intelligence in surgery (2019). arXiv preprint arXiv:2001.00627

Download references

Acknowledgements

Research reported in this publication was supported by the National Institutes of Health (NIH) under award numbers NIH 1R41MH118845 and NIH 1R01AR072013. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahin Olut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olut, S., Shen, Z., Xu, Z., Gerber, S., Niethammer, M. (2020). Adversarial Data Augmentation via Deformation Statistics. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12374. Springer, Cham. https://doi.org/10.1007/978-3-030-58526-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58526-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58525-9

  • Online ISBN: 978-3-030-58526-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics