Skip to main content

Simulating Content Consistent Vehicle Datasets with Attribute Descent

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

This paper uses a graphic engine to simulate a large amount of training data with free annotations. Between synthetic and real data, there is a two-level domain gap, i.e., content level and appearance level. While the latter has been widely studied, we focus on reducing the content gap in attributes like illumination and viewpoint. To reduce the problem complexity, we choose a smaller and more controllable application, vehicle re-identification (re-ID). We introduce a large-scale synthetic dataset VehicleX. Created in Unity, it contains 1,362 vehicles of various 3D models with fully editable attributes. We propose an attribute descent approach to let VehicleX approximate the attributes in real-world datasets. Specifically, we manipulate each attribute in VehicleX, aiming to minimize the discrepancy between VehicleX and real data in terms of the Fréchet Inception Distance (FID). This attribute descent algorithm allows content domain adaptation (DA) orthogonal to existing appearance DA methods. We mix the optimized VehicleX data with real-world vehicle re-ID datasets, and observe consistent improvement. With the augmented datasets, we report competitive accuracy. We make the dataset, engine and our codes available at https://github.com/yorkeyao/VehicleX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.aicitychallenge.org/.

References

  1. Bai, Y., Lou, Y., Gao, F., Wang, S., Wu, Y., Duan, L.Y.: Group-sensitive triplet embedding for vehicle reidentification. IEEE Trans. Multimed. 20(9), 2385–2399 (2018)

    Article  Google Scholar 

  2. Bak, S., Carr, P., Lalonde, J.F.: Domain adaptation through synthesis for unsupervised person re-identification. In: ECCV (2018)

    Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(Feb), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Binkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans. In: ICLR (2018)

    Google Scholar 

  5. Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  6. Chu, R., Sun, Y., Li, Y., Liu, Z., Zhang, C., Wei, Y.: Vehicle re-identification with viewpoint-aware metric learning. In: ICCV (2019)

    Google Scholar 

  7. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR (2018)

    Google Scholar 

  8. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR (2016)

    Google Scholar 

  9. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  11. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: ICML (2018)

    Google Scholar 

  12. Hou, Y., Zheng, L., Gould, S.: Multiview detection with feature perspective transformation. arXiv preprint arXiv:2007.07247 (2020)

  13. Juliani, A., et al.: Unity: a general platform for intelligent agents. arXiv preprint arXiv:1809.02627 (2018)

  14. Kar, A., et al.: Meta-sim: Learning to generate synthetic datasets. In: ICCV (2019)

    Google Scholar 

  15. Khorramshahi, P., Kumar, A., Peri, N., Rambhatla, S.S., Chen, J.C., Chellappa, R.: A dual path modelwith adaptive attention for vehicle re-identification. In: ICCV (2019)

    Google Scholar 

  16. Kolve, E., Mottaghi, R., Gordon, D., Zhu, Y., Gupta, A., Farhadi, A.: Ai2-thor: an interactive 3D environment for visual AI. arXiv preprint arXiv:1712.05474 (2017)

  17. Kumar, R., Weill, E., Aghdasi, F., Sriram, P.: Vehicle re-identification: an efficient baseline using triplet embedding. arXiv preprint arXiv:1901.01015 (2019)

  18. Liu, H., Tian, Y., Yang, Y., Pang, L., Huang, T.: Deep relative distance learning: tell the difference between similar vehicles. In: CVPR (2016)

    Google Scholar 

  19. Liu, X., Zhang, S., Huang, Q., Gao, W.: Ram: a region-aware deep model for vehicle re-identification. In: ICME (2018)

    Google Scholar 

  20. Liu, X., Liu, W., Ma, H., Fu, H.: Large-scale vehicle re-identification in urban surveillance videos. In: ICME (2016)

    Google Scholar 

  21. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  22. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPR Workshops (2019)

    Google Scholar 

  23. Naphade, M., et al.: The 4th AI city challenge. In: CVPR Workshops, pp. 626–627 (2020)

    Google Scholar 

  24. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV (2019)

    Google Scholar 

  25. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: ECCV (2016)

    Google Scholar 

  26. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  27. Ruiz, N., Schulter, S., Chandraker, M.: Learning to simulate. In: ICLR (2019)

    Google Scholar 

  28. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126(9), 973–992 (2018). https://doi.org/10.1007/s11263-018-1072-8

    Article  Google Scholar 

  29. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017)

    Google Scholar 

  30. Sun, X., Zheng, L.: Dissecting person re-identification from the viewpoint of viewpoint. In: CVPR (2019)

    Google Scholar 

  31. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: ECCV (2018)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  33. Tang, Z., et al.: Pamtri: pose-aware multi-task learning for vehicle re-identification using highly randomized synthetic data. In: ICCV (2019)

    Google Scholar 

  34. Tang, Z., et al.: Cityflow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification. In: CVPR (2019)

    Google Scholar 

  35. Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. In: CVPR Workshops (2018)

    Google Scholar 

  36. Wang, Z., et al.: Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In: ICCV (2017)

    Google Scholar 

  37. Wright, S.J.: Coordinate descent algorithms. Math. Programm. 151(1), 3–34 (2015)

    Article  MathSciNet  Google Scholar 

  38. Xue, Z., Mao, W., Zheng, L.: Learning to simulate complex scenes. arXiv preprint arXiv:2006.14611 (2020)

  39. Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: CVPR (2015)

    Google Scholar 

  40. Yao, Y., Plested, J., Gedeon, T.: Information-preserving feature filter for short-term eeg signals. Neurocomputing 408, 91–99 (2020)

    Article  Google Scholar 

  41. Zheng, L., et al.: MARS: a video benchmark for large-scale person re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_52

    Chapter  Google Scholar 

  42. Zheng, Z., Ruan, T., Wei, Y., Yang, Y.: Vehiclenet: learning robust feature representation for vehicle re-identification. In: CVPR Workshops (2019)

    Google Scholar 

  43. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: CVPR, pp. 3754–3762 (2017)

    Google Scholar 

  44. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2018)

    Google Scholar 

  45. Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camstyle: a novel data augmentation method for person re-identification. IEEE Trans. Image Process. 28(3), 1176–1190 (2018)

    Article  MathSciNet  Google Scholar 

  46. Zhou, Y., Shao, L.: Aware attentive multi-view inference for vehicle re-identification. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgement

Dr. Liang Zheng is the recipient of Australian Research Council Discovery Early Career Award (DE200101283) funded by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y., Zheng, L., Yang, X., Naphade, M., Gedeon, T. (2020). Simulating Content Consistent Vehicle Datasets with Attribute Descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics