Skip to main content

Multiple Sound Sources Localization from Coarse to Fine

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12365))

Included in the following conference series:

Abstract

How to visually localize multiple sound sources in unconstrained videos is a formidable problem, especially when lack of the pairwise sound-object annotations. To solve this problem, we develop a two-stage audiovisual learning framework that disentangles audio and visual representations of different categories from complex scenes, then performs cross-modal feature alignment in a coarse-to-fine manner. Our model achieves state-of-the-art results on public dataset of localization, as well as considerable performance on multi-source sound localization in complex scenes. We then employ the localization results for sound separation and obtain comparable performance to existing methods. These outcomes demonstrate our model’s ability in effectively aligning sounds with specific visual sources. Code is available at https://github.com/shvdiwnkozbw/Multi-Source-Sound-Localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We choose \(F_a\) and \(O_v\) for two reasons: we can obtain more fine-grained local features and achieve easier training process.

  2. 2.

    We find that directly using \(F_r\) with the weights \(W_r^c\) is difficult to perform alignment objective, but by performing weighted pooling on \(E_r\), we achieve easier training and faster convergence.

  3. 3.

    In practice, a threshold over all the class predictions is considered to select valid categories.

  4. 4.

    Since AudioSet only provides clip-level audio labels, we can only ensure that labelled sounds appear in the clip. Thus we adopt the whole 10-s audio clip with one randomly selected frame from video as a pair.

  5. 5.

    We have filtered out those silent detected objects.

References

  1. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 609–617, October 2017. https://doi.org/10.1109/ICCV.2017.73

  2. Arandjelović, R., Zisserman, A.: Objects that sound. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 451–466. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_27

    Chapter  Google Scholar 

  3. Aytar, Y., Vondrick, C., Torralba, A.: SoundNet: learning sound representations from unlabeled video. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 892–900. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6146-soundnet-learning-sound-representations-from-unlabeled-video.pdf

  4. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847, March 2018. https://doi.org/10.1109/WACV.2018.00097

  5. Gan, C., Huang, D., Zhao, H., Tenenbaum, J.B., Torralba, A.: Music gesture for visual sound separation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10478–10487 (2020)

    Google Scholar 

  6. Gan, C., Zhang, Y., Wu, J., Gong, B., Tenenbaum, J.B.: Look, listen, and act: towards audio-visual embodied navigation. arXiv preprint arXiv:1912.11684 (2019)

  7. Gan, C., Zhao, H., Chen, P., Cox, D., Torralba, A.: Self-supervised moving vehicle tracking with stereo sound. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7053–7062 (2019)

    Google Scholar 

  8. Gao, R., Feris, R., Grauman, K.: Learning to separate object sounds by watching unlabeled video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 36–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_3

    Chapter  Google Scholar 

  9. Gao, R., Grauman, K.: 2.5D visual sound. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 324–333 (2019)

    Google Scholar 

  10. Gao, R., Grauman, K.: Co-separating sounds of visual objects. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  11. Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780, March 2017. https://doi.org/10.1109/ICASSP.2017.7952261

  12. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742, June 2006. https://doi.org/10.1109/CVPR.2006.100

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  14. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 131–135, March 2017. https://doi.org/10.1109/ICASSP.2017.7952132

  15. Hu, D., Nie, F., Li, X.: Deep multimodal clustering for unsupervised audiovisual learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  16. Hu, D., Wang, Z., Xiong, H., Wang, D., Nie, F., Dou, D.: Curriculum audiovisual learning. arXiv preprint arXiv:2001.09414 (2020)

  17. Korbar, B., Tran, D., Torresani, L.: Co-training of audio and video representations from self-supervised temporal synchronization. arXiv:1807.00230 (2018)

  18. Owens, A., Efros, A.A.: Audio-visual scene analysis with self-supervised multisensory features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 639–658. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_39

    Chapter  Google Scholar 

  19. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Ambient sound provides supervision for visual learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 801–816. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_48

    Chapter  Google Scholar 

  20. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014). http://www.aclweb.org/anthology/D14-1162

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Rouditchenko, A., Zhao, H., Gan, C., McDermott, J., Torralba, A.: Self-supervised audio-visual co-segmentation. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2357–2361. IEEE (2019)

    Google Scholar 

  23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  24. Senocak, A., Oh, T.H., Kim, J., Yang, M.H., So Kweon, I.: Learning to localize sound source in visual scenes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  25. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017). https://doi.org/10.1109/TPAMI.2016.2646371

    Article  Google Scholar 

  26. Spiertz, M., Gnann, V.: Source-filter based clustering for monaural blind source separation. In: Proceedings of the 12th International Conference on Digital Audio Effects (2009)

    Google Scholar 

  27. Tian, Y., Shi, J., Li, B., Duan, Z., Xu, C.: Audio-visual event localization in unconstrained videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 252–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_16

    Chapter  Google Scholar 

  28. Zhao, H., Gan, C., Ma, W.C., Torralba, A.: The sound of motions. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  29. Zhao, H., Gan, C., Rouditchenko, A., Vondrick, C., McDermott, J., Torralba, A.: The sound of pixels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 587–604. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_35

    Chapter  Google Scholar 

  30. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  31. Zhou, H., Xu, X., Lin, D., Wang, X., Liu, Z.: Sep-stereo: visually guided stereophonic audio generation by associating source separation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 52–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_4

    Chapter  Google Scholar 

Download references

Acknowledgement

The paper is supported in part by the following grants: China Major Project for New Generation of AI Grant (No.2018AAA0100400), National Natural Science Foundation of China (No. 61971277, No. 61901265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyao Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 10754 KB)

Supplementary material 1 (pdf 2531 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, R., Hu, D., Dinkel, H., Wu, M., Xu, N., Lin, W. (2020). Multiple Sound Sources Localization from Coarse to Fine. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12365. Springer, Cham. https://doi.org/10.1007/978-3-030-58565-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58565-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58564-8

  • Online ISBN: 978-3-030-58565-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics