Skip to main content

Rethinking Few-Shot Image Classification: A Good Embedding is All You Need?

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

Abstract

The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or self-supervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of self-distillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms. Code: http://github.com/WangYueFt/rfs/.

Y. Tian and Y. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Machine learning in python. https://scikit-learn.org/stable/

  2. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: ICML (2019)

    Google Scholar 

  3. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136 (2018)

  4. Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: SIGKDD (2006)

    Google Scholar 

  5. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  6. Chen, Y., Wang, X., Liu, Z., Xu, H., Darrell, T.: A new meta-baseline for few-shot learning. ArXiv abs/2003.04390 (2020)

    Google Scholar 

  7. Clark, K., Luong, M.T., Manning, C.D., Le, Q.V.: Bam! born-again multi-task networks for natural language understanding. In: ACL (2019)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR09 (2009)

    Google Scholar 

  9. Dhillon, G.S., Chaudhari, P., Ravichandran, A., Soatto, S.: A baseline for few-shot image classification. In: ICLR (2020)

    Google Scholar 

  10. Dvornik, N., Schmid, C., Mairal, J.: Diversity with cooperation: ensemble methods for few-shot classification. In: ICCV (2019)

    Google Scholar 

  11. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  12. Furlanello, T., Lipton, Z.C., Tschannen, M., Itti, L., Anandkumar, A.: Born-again neural networks. In: ICML (2018)

    Google Scholar 

  13. Gan, C., Gong, B., Liu, K., Su, H., Guibas, L.J.: Geometry guided convolutional neural networks for self-supervised video representation learning. In: CVPR (2018)

    Google Scholar 

  14. Gan, C., Zhao, H., Chen, P., Cox, D., Torralba, A.: Self-supervised moving vehicle tracking with stereo sound. In: ICCV (2019)

    Google Scholar 

  15. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)

    Google Scholar 

  16. Hao, F., He, F., Cheng, J., Wang, L., Cao, J., Tao, D.: Collect and select: semantic alignment metric learning for few-shot learning. In: ICCV (2019)

    Google Scholar 

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. ArXiv abs/1911.05722 (2019)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  21. Huang, S., Tao, D.: All you need is a good representation: A multi-level and classifier-centric representation for few-shot learning. ArXiv abs/1911.12476 (2019)

    Google Scholar 

  22. Jamal, M.A., Qi, G.J.: Task agnostic meta-learning for few-shot learning. In: CVPR (2019)

    Google Scholar 

  23. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop (2015)

    Google Scholar 

  24. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: Human-level concept learning through probabilistic program induction. Science 350(6266), 1332–1338 (2015)

    Article  MathSciNet  Google Scholar 

  25. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B.: The Omniglot challenge: a 3-year progress report. Curr. Opin. Behav. Sci. 29, 97–104 (2019)

    Article  Google Scholar 

  26. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)

    Google Scholar 

  27. Li, A., Luo, T., Xiang, T., Huang, W., Wang, L.: Few-shot learning with global class representations. In: ICCV (2019)

    Google Scholar 

  28. Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR (2019)

    Google Scholar 

  29. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: A simple neural attentive meta-learner. arXiv preprint arXiv:1707.03141 (2017)

  30. Mobahi, H., Farajtabar, M., Bartlett, P.L.: Self-distillation amplifies regularization in hilbert space. arXiv preprint arXiv:2002.05715 (2020)

  31. Munkhdalai, T., Yuan, X., Mehri, S., Trischler, A.: Rapid adaptation with conditionally shifted neurons. arXiv preprint arXiv:1712.09926 (2017)

  32. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. ArXiv abs/1803.02999 (2018)

    Google Scholar 

  33. Oreshkin, B., López, P.R., Lacoste, A.: Tadam: task dependent adaptive metric for improved few-shot learning. In: NIPS (2018)

    Google Scholar 

  34. Peng, Z., Li, Z., Zhang, J., Li, Y., Qi, G.J., Tang, J.: Few-shot image recognition with knowledge transfer. In: ICCV (2019)

    Google Scholar 

  35. Qiao, L., Shi, Y., Li, J., Wang, Y., Huang, T., Tian, Y.: Transductive episodic-wise adaptive metric for few-shot learning. In: ICCV (2019)

    Google Scholar 

  36. Qiao, S., Liu, C., Shen, W., Yuille, A.L.: Few-shot image recognition by predicting parameters from activations. In: CVPR (2018)

    Google Scholar 

  37. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157 (2019)

  38. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  39. Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: ICCV (2019)

    Google Scholar 

  40. Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)

    Google Scholar 

  41. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization. In: ICLR (2019)

    Google Scholar 

  42. Scott, T., Ridgeway, K., Mozer, M.C.: Adapted deep embeddings: a synthesis of methods for k-shot inductive transfer learning. In: NIPS (2018)

    Google Scholar 

  43. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NIPS (2017)

    Google Scholar 

  44. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR (2019)

    Google Scholar 

  45. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  46. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849 (2019)

  47. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. arXiv preprint arXiv:1910.10699 (2019)

  48. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? arXiv preprint arXiv:2005.10243 (2020)

  49. Triantafillou, E., Zemel, R.S., Urtasun, R.: Few-shot learning through an information retrieval lens. In: NIPS (2017)

    Google Scholar 

  50. Triantafillou, E., et al.: Meta-dataset: a dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096 (2019)

  51. Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NIPS (2016)

    Google Scholar 

  52. Wang, Y.X., Girshick, R.B., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: CVPR (2018)

    Google Scholar 

  53. Wang, Y.X., Hebert, M.: Learning from small sample sets by combining unsupervised meta-training with CNNs. Adv. Neural Inform. Process. Syst. 29, 244–252 (2016)

    Google Scholar 

  54. Wang, Y., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: ECCV (2016)

    Google Scholar 

  55. Weng, L.: Meta-learning: Learning to learn fast. lilianweng.github.io/lil-log (2018). http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html

  56. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  57. Wu, Z., Li, Y., Guo, L., Jia, K.: Parn: position-aware relation networks for few-shot learning. In: ICCV (2019)

    Google Scholar 

  58. Ye, H.J., Hu, H., Zhan, D.C., Sha, F.: Learning embedding adaptation for few-shot learning. CoRR abs/1812.03664 (2018)

    Google Scholar 

  59. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR (2017)

    Google Scholar 

  60. Zhang, J., Zhao, C., Ni, B., Xu, M., Yang, X.: Variational few-shot learning. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgement

The authors thank Hugo Larochelle and Justin Solomon for helpful discussions and feedback on this manuscript. This research was supported in part by iFlytek. This material was also based in part upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. FA8750-19-C-1001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonglong Tian or Yue Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 131 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P. (2020). Rethinking Few-Shot Image Classification: A Good Embedding is All You Need?. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics