Skip to main content

ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12359))

Included in the following conference series:

Abstract

In this paper, we propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost. We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts, bypassing all the intermediate convolutional layers including the downsampling layers. This baseline network strikes a good trade-off between accuracy and efficiency, achieving superior performance than most of existing binary networks at approximately half of the computational cost. Through extensive experiments and analysis, we observed that the performance of binary networks is sensitive to activation distribution variations. Based on this important observation, we propose to generalize the traditional Sign and PReLU functions, denoted as RSign and RPReLU for the respective generalized functions, to enable explicit learning of the distribution reshape and shift at near-zero extra cost. Lastly, we adopt a distributional loss to further enforce the binary network to learn similar output distributions as those of a real-valued network. We show that after incorporating all these ideas, the proposed ReActNet outperforms all the state-of-the-arts by a large margin. Specifically, it outperforms Real-to-Binary Net and MeliusNet29 by 4.0% and 3.6% respectively for the top-1 accuracy and also reduces the gap to its real-valued counterpart to within 3.0% top-1 accuracy on ImageNet dataset. Code and models are available at: https://github.com/liuzechun/ReActNet.

Z. Liu—Work done while visiting CMU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    OPs is a sum of binary OPs and floating-point OPs, i.e., OPs = BOPs/64 + FLOPs.

References

  1. Alizadeh, M., Fernández-Marqués, J., Lane, N.D., Gal, Y.: An empirical study of binary neural networks’ optimisation (2018)

    Google Scholar 

  2. Bethge, J., Bartz, C., Yang, H., Chen, Y., Meinel, C.: Meliusnet: can binary neural networks achieve mobilenet-level accuracy? arXiv preprint arXiv:2001.05936 (2020)

  3. Martinez, B., Yang, J., Bulat, A., Tzimiropoulos, G.: Training binary neural networks with real-to-binary convolutions. In: International Conference on Learning Representations (2020)

    Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: XNOR-NET++: improved binary neural networks. In: British Machine Vision Conference (2019)

    Google Scholar 

  5. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-wave gaussian quantization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5918–5926 (2017)

    Google Scholar 

  6. Chen, G., Choi, W., Yu, X., Han, T., Chandraker, M.: Learning efficient object detection models with knowledge distillation. In: Advances in Neural Information Processing Systems, pp. 742–751 (2017)

    Google Scholar 

  7. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to + 1 or -1. arXiv preprint arXiv:1602.02830 (2016)

  8. Ding, R., Chin, T.W., Liu, Z., Marculescu, D.: Regularizing activation distribution for training binarized deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11408–11417 (2019)

    Google Scholar 

  9. Ding, X., Zhou, X., Guo, Y., Han, J., Liu, J., et al.: Global sparse momentum SGD for pruning very deep neural networks. In: Advances in Neural Information Processing Systems, pp. 6379–6391 (2019)

    Google Scholar 

  10. Faraone, J., Fraser, N., Blott, M., Leong, P.H.: SYG: learning symmetric quantization for efficient deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4300–4309 (2018)

    Google Scholar 

  11. Gu, J., et al.: Projection convolutional neural networks for 1-bit CNNs via discrete back propagation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8344–8351 (2019)

    Google Scholar 

  12. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  13. Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng, K.T., Nusselder, R.: Latent weights do not exist: rethinking binarized neural network optimization. In: Advances in Neural Information Processing Systems, pp. 7531–7542 (2019)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  16. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  17. Li, B., Shan, Y., Hu, M., Wang, Y., Chen, Y., Yang, H.: Memristor-based approximated computation. In: Proceedings of the 2013 International Symposium on Low Power Electronics and Design, pp. 242–247. IEEE Press (2013)

    Google Scholar 

  18. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)

  19. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. In: Advances in Neural Information Processing Systems, pp. 345–353 (2017)

    Google Scholar 

  20. Liu, C., et al.: Circulant binary convolutional networks: enhancing the performance of 1-bit DCNNs with circulant back propagation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2019)

    Google Scholar 

  21. Liu, Z., Luo, W., Wu, B., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: binarizing deep network towards real-network performance. Int. J. Comput. Vis. 128, 1–18 (2018)

    Google Scholar 

  22. Liu, Z., et al.: Metapruning: meta learning for automatic neural network channel pruning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3296–3305 (2019)

    Google Scholar 

  23. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.-T.: Bi-real net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 747–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_44

    Chapter  Google Scholar 

  24. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2736–2744 (2017)

    Google Scholar 

  25. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  26. Mishra, A., Nurvitadhi, E., Cook, J.J., Marr, D.: WRPN: wide reduced-precision networks. arXiv preprint arXiv:1709.01134 (2017)

  27. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

    Google Scholar 

  28. Phan, H., Liu, Z., Huynh, D., Savvides, M., Cheng, K.T., Shen, Z.: Binarizing mobilenet via evolution-based searching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13420–13429 (2020)

    Google Scholar 

  29. Qin, H., et al.: Forward and backward information retention for accurate binary neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2250–2259 (2020)

    Google Scholar 

  30. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imageNet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_32

    Chapter  Google Scholar 

  31. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Google Scholar 

  32. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  33. Shen, Z., He, Z., Xue, X.: Meal: multi-model ensemble via adversarial learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4886–4893 (2019)

    Google Scholar 

  34. Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: parameter-free training of multilayer neural networks with continuous or discrete weights. In: Advances in Neural Information Processing Systems, pp. 963–971 (2014)

    Google Scholar 

  35. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Google Scholar 

  36. Tang, W., Hua, G., Wang, L.: How to train a compact binary neural network with high accuracy? In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  37. Wang, Z., Lu, J., Tao, C., Zhou, J., Tian, Q.: Learning channel-wise interactions for binary convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  38. Xu, Z., Cheung, R.C.: Accurate and compact convolutional neural networks withtrained binarization. In: British Machine Vision Conference (2019)

    Google Scholar 

  39. Zhang, D., Yang, J., Ye, D., Hua, G.: LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 373–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_23

    Chapter  Google Scholar 

  40. Zhang, J., Pan, Y., Yao, T., Zhao, H., Mei, T.: dabnn: a super fast inference framework for binary neural networks on arm devices. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2272–2275 (2019)

    Google Scholar 

  41. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  42. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNs with low-precision weights. arXiv preprint arXiv:1702.03044 (2017)

  43. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: training low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

  44. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. arXiv preprint arXiv:1612.01064 (2016)

  45. Zhu, S., Dong, X., Su, H.: Binary ensemble neural network: more bits per network or more networks per bit? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4923–4932 (2019)

    Google Scholar 

  46. Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Towards effective low-bitwidth convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7920–7928 (2018)

    Google Scholar 

  47. Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–422 (2019)

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge HKSAR RGC’s funding support under grant GRF-16207917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Shen, Z., Savvides, M., Cheng, KT. (2020). ReActNet: Towards Precise Binary Neural Network with Generalized Activation Functions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics