Skip to main content

PieNet: Personalized Image Enhancement Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Image enhancement is an inherently subjective process since people have diverse preferences for image aesthetics. However, most enhancement techniques pay less attention to the personalization issue despite its importance. In this paper, we propose the first deep learning approach to personalized image enhancement, which can enhance new images for a new user, by asking him or her to select about 10–20 preferred images from a random set of images. First, we represent various users’ preferences for enhancement as feature vectors in an embedding space, called preference vectors. We construct the embedding space based on metric learning. Then, we develop the personalized image enhancement network (PieNet) to enhance images adaptively using each user’s preference vector. Experimental results demonstrate that the proposed algorithm is capable of achieving personalization successfully, as well as outperforming conventional general image enhancement algorithms significantly. The source codes and trained models are available at https://github.com/hukim1124/PieNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)

    Article  Google Scholar 

  2. Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graph. 33(5), 167 (2014)

    Article  Google Scholar 

  4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “Siamese” time delay neural network. In: NIPS (1994)

    Google Scholar 

  5. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR (2011)

    Google Scholar 

  6. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: ICCV (2017)

    Google Scholar 

  7. Caicedo, J.C., Kapoor, A., Kang, S.B.: Collaborative personalization of image enhancement. In: CVPR (2011)

    Google Scholar 

  8. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification. In: CVPR (2017)

    Google Scholar 

  9. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: CVPR (2018)

    Google Scholar 

  10. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR (2005)

    Google Scholar 

  11. Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. In: ACM MM (2018)

    Google Scholar 

  12. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: CVPR (2016)

    Google Scholar 

  14. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. 36(4), 118 (2017)

    Article  Google Scholar 

  15. Sundararajan, D.: Edge detection. In: Sundararajan, D. (ed.) Digital Image Processing, pp. 257–280. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6113-4_9

    Chapter  MATH  Google Scholar 

  16. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  19. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. 37(2), 26 (2018)

    Article  Google Scholar 

  20. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  21. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  22. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  23. Joshi, N., Matusik, W., Adelson, E.H., Kriegman, D.J.: Personal photo enhancement using example images. ACM Trans. Graph. 29(2), 12:1–12:15 (2010)

    Article  Google Scholar 

  24. Kang, S.B., Kapoor, A., Lischinski, D.: Personalization of image enhancement. In: CVPR (2010)

    Google Scholar 

  25. Kim, J.H., Jang, W.D., Sim, J.Y., Kim, C.S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24, 410–425 (2013)

    Article  Google Scholar 

  26. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electro. 43(1), 1–8 (1997)

    Article  MathSciNet  Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  28. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  29. Lee, C., Kim, J.H., Lee, C., Kim, C.S.: Optimized brightness compensation and contrast enhancement for transmissive liquid crystal displays. IEEE Trans. Circuits Syst. Video Technol. 24, 576–590 (2014)

    Article  Google Scholar 

  30. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  31. Lee, C., Lee, C., Lee, Y.Y., Kim, C.S.: Power-constrained contrast enhancement for emissive displays based on histogram equalization. IEEE Trans. Image Process. 21(1), 80–93 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Lim, J., Heo, M., Lee, C., Kim, C.S.: Contrast enhancement of noisy low-light images based on structure-texture-noise decomposition. J. Vis. Commun. Image Represent. 45, 107–121 (2017)

    Article  Google Scholar 

  33. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 61, 650–662 (2017)

    Article  Google Scholar 

  34. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  35. Park, J., Lee, J.Y., Yoo, D., Kweon, I.S.: Distort-and-recover: color enhancement using deep reinforcement learning. In: CVPR (2018)

    Google Scholar 

  36. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  37. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  38. Sohn, K.: Improved deep metric learning with multi-class N-pair loss objective. In: NIPS (2016)

    Google Scholar 

  39. Song, H.O., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility location. In: CVPR (2017)

    Google Scholar 

  40. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: CVPR (2016)

    Google Scholar 

  41. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  42. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: CVPR (2019)

    Google Scholar 

  43. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  44. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electro. 45(1), 68–75 (1999)

    Article  Google Scholar 

  45. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. 35(2), 11 (2016)

    Article  Google Scholar 

  46. Yu, R., Liu, W., Zhang, Y., Qu, Z., Zhao, D., Zhang, B.: Deepexposure: learning to expose photos with asynchronously reinforced adversarial learning. In: NIPS (2018)

    Google Scholar 

  47. Yue, H., Yang, J., Sun, X., Wu, F., Hou, C.: Contrast enhancement based on intrinsic image decomposition. IEEE Trans. Image Process. 26(8), 3981–3994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2020-2016-0-00464) supervised by the IITP (Institute for Information & communications Technology Promotion), in part by the National Research Foundation of Korea (NRF) through the Korea Government (MSIP) under Grant NRF-2018R1A2B3003896, and in part by the research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Jun Koh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (pdf 41652 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, HU., Koh, Y.J., Kim, CS. (2020). PieNet: Personalized Image Enhancement Network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12375. Springer, Cham. https://doi.org/10.1007/978-3-030-58577-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58577-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58576-1

  • Online ISBN: 978-3-030-58577-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics