Skip to main content

Stacking Networks Dynamically for Image Restoration Based on the Plug-and-Play Framework

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

Abstract

Recently, stacked networks show powerful performance in Image Restoration, such as challenging motion deblurring problems. However, the number of stacking levels is a hyper-parameter fine-tuned manually, making the stacking levels static during training without theoretical explanations for optimal settings. To address this challenge, we leverage the iterative process of the traditional plug-and-play method to provide a dynamic stacked network for Image Restoration. Specifically, a new degradation model with a novel update scheme is designed to integrate the deep neural network as the prior within the plug-and-play model. Compared with static stacked networks, our models are stacked dynamically during training via iterations, guided by a solid mathematical explanation. Theoretical proof on the convergence of the dynamic stacking process is provided. Experiments on the noise dataset BSD68, Set12, and motion blur dataset GoPro demonstrate that our framework outperforms the state-of-the-art in terms of PSNR and SSIM score without extra training process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  2. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Boyd, S., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  4. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2392–2399. IEEE (2012)

    Google Scholar 

  5. Chan, S.H., Wang, X., Elgendy, O.A.: Plug-and-play ADMM for image restoration: fixed-point convergence and applications. IEEE Trans. Comput. Imaging 3(1), 84–98 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2016)

    Article  Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Google Scholar 

  8. Danielyan, A., Katkovnik, V., Egiazarian, K.: Image deblurring by augmented Lagrangian with BM3D frame prior. In: Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), Tampere, Finland, pp. 16–18 (2010)

    Google Scholar 

  9. Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 41(10), 2305–2318 (2018)

    Article  Google Scholar 

  10. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 191 (2016)

    Article  Google Scholar 

  11. Gu, S., Timofte, R., Van Gool, L.: Integrating local and non-local denoiser priors for image restoration. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2923–2928. IEEE (2018)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  15. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: Advances in Neural Information Processing Systems, pp. 1673–1682 (2018)

    Google Scholar 

  16. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)

    Google Scholar 

  17. Liu, R., Fan, X., Cheng, S., Wang, X., Luo, Z.: Proximal alternating direction network: a globally converged deep unrolling framework. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  18. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  19. Ono, S.: Primal-dual plug-and-play image restoration. IEEE Sig. Process. Lett. 24(8), 1108–1112 (2017)

    Article  Google Scholar 

  20. Plötz, T., Roth, S.: Neural nearest neighbors networks. In: Advances in Neural Information Processing Systems, pp. 1087–1098 (2018)

    Google Scholar 

  21. Reehorst, E.T., Schniter, P.: Regularization by denoising: clarifications and new interpretations. IEEE Trans. Comput. Imaging 5(1), 52–67 (2018)

    Article  Google Scholar 

  22. Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205 (2009)

    Article  Google Scholar 

  23. Santhanam, V., Morariu, V.I., Davis, L.S.: Generalized deep image to image regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5609–5619 (2017)

    Google Scholar 

  24. Sellent, A., Rother, C., Roth, S.: Stereo video deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 558–575. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_35

    Chapter  Google Scholar 

  25. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  26. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  27. Venkatakrishnan, S.V., Bouman, C.A., Wohlberg, B.: Plug-and-play priors for model based reconstruction. In: 2013 IEEE Global Conference on Signal and Information Processing, pp. 945–948. IEEE (2013)

    Google Scholar 

  28. Wang, S., Wen, B., Wu, J., Tao, D., Wang, Z.: Segmentation-aware image denoising without knowing true segmentation. arXiv preprint arXiv:1905.08965 (2019)

  29. Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: Advances in Neural Information Processing Systems, pp. 1790–1798 (2014)

    Google Scholar 

  30. Yue, Z., Yong, H., Zhao, Q., Zhang, L., Meng, D.: Variational denoising network: toward blind noise modeling and removal. arXiv preprint arXiv:1908.11314 (2019)

  31. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  32. Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R.W., Yang, M.H.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2521–2529 (2018)

    Google Scholar 

  33. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

  35. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486. IEEE (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants from the National Natural Science Foundation of China (NSFC, No. 61973007, 61633002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinan Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 58832 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H. et al. (2020). Stacking Networks Dynamically for Image Restoration Based on the Plug-and-Play Framework. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics