Skip to main content

Utilizing Patch-Level Category Activation Patterns for Multiple Class Novelty Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12355))

Included in the following conference series:

Abstract

For any recognition system, the ability to identify novel class samples during inference is an important aspect of the system’s robustness. This problem of detecting novel class samples during inference is commonly referred to as Multiple Class Novelty Detection. In this paper, we propose a novel method that makes deep convolutional neural networks robust to novel classes. Specifically, during training one branch performs traditional classification (referred to as global inference), and the other branch provides patch-level information to keep track of the class-specific activation patterns (referred to as local inference). Both global and local branch information are combined to train a novelty detection network, which is used during inference to identify novel classes. We evaluate the proposed method on four datasets (Caltech256, CUB-200, Stanford Dogs and FounderType-200) and show that the proposed method is able to identify novel class samples better compared to the other deep convolutional neural network-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    github.com/tensorflow/tpu/tree/master/models/official/efficientnet.

References

  1. Baweja, Y., Oza, P., Perera, P., Patel, V.M.: Anomaly detection-based unknown face presentation attack detection. In: International Joint Conference on Biometrics (IJCB), Houston, TX (2020)

    Google Scholar 

  2. Bendale, A., Boult, T.E.: Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1563–1572 (2016)

    Google Scholar 

  3. Bhattacharjee, S., Mandal, D., Biswas, S.: Multi-class novelty detection using mix-up technique. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 1400–1409 (2020)

    Google Scholar 

  4. Bodesheim, P., Freytag, A., Rodner, E., Denzler, J.: Local novelty detection in multi-class recognition problems. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 813–820. IEEE (2015)

    Google Scholar 

  5. Bodesheim, P., Freytag, A., Rodner, E., Kemmler, M., Denzler, J.: Kernel null space methods for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3374–3381 (2013)

    Google Scholar 

  6. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  7. Brendel, W., Bethge, M.: Approximating cnns with bag-of-local-features models works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760 (2019)

  8. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  9. DeVries, T., Taylor, G.W.: Learning confidence for out-of-distribution detection in neural networks. arXiv preprint arXiv:1802.04865 (2018)

  10. Dhamija, A.R., Günther, M., Boult, T.E.: Improving deep network robustness to unknown inputs with objectosphere (2019)

    Google Scholar 

  11. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Barbará, D., Jajodia, S. (eds.) Applications of data mining in computer security. Advances in Information Security, vol. 6, pp. 77–101. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0_4

    Chapter  Google Scholar 

  12. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  13. Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 430–433. IEEE (2004)

    Google Scholar 

  14. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  15. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)

    Article  Google Scholar 

  16. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: training deep neural networks with biased data. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  17. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. Int. J. Very Large Data Bases 8(3-4), 237–253 (2000)

    Google Scholar 

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  19. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  20. Liu, J., Lian, Z., Wang, Y., Xiao, J.: Incremental kernel null space discriminant analysis for novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 792–800 (2017)

    Google Scholar 

  21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

  22. Markou, M., Singh, S.: Novelty detection: a review—part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003)

    Google Scholar 

  23. Neal, L., Olson, M., Fern, X., Wong, W.-K., Li, F.: Open set learning with counterfactual images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 620–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_38

    Chapter  Google Scholar 

  24. Oza, P., Nguyen, H.V.N., Patel, V.M.: Multiple class novelty detection under data distribution shift. In: ECCV 2020. Springer, Cham (2020)

    Google Scholar 

  25. Oza, P., Patel, V.M.: One-class convolutional neural network. IEEE Signal Process. Lett. 26(2), 277–281 (2018)

    Article  Google Scholar 

  26. Perera, P., et al.: Generative-discriminative feature representations for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11814–11823 (2020)

    Google Scholar 

  27. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using GANs with constrained latent representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2898–2906 (2019)

    Google Scholar 

  28. Perera, P., Patel, V.M.: Deep transfer learning for multiple class novelty detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11544–11552 (2019)

    Google Scholar 

  29. Perera, P., Patel, V.M.: Learning deep features for one-class classification. IEEE Trans. Image Process. 28(11), 5450–5463 (2019)

    Article  MathSciNet  Google Scholar 

  30. Samangouei, P., Kabkab, M., Chellappa, R.: Defense-GAN: protecting classifiers against adversarial attacks using generative models. arXiv preprint arXiv:1805.06605 (2018)

  31. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  32. Schultheiss, A., Käding, C., Freytag, A., Denzler, J.: Finding the unknown: novelty detection with extreme value signatures of deep neural activations. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 226–238. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_19

    Chapter  Google Scholar 

  33. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  34. Shao, R., Perera, P., Yuen, P.C., Patel, V.M.: Open-set adversarial defense. In: ECCV 2020. Springer, Cham (2020)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  36. Srinivas, N., Ricanek, K., Michalski, D., Bolme, D.S., King, M.: Face recognition algorithm bias: Performance differences on images of children and adults. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  37. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  38. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)

    Article  Google Scholar 

  39. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  40. Vera-Rodriguez, R., Blazquez, M., Morales, A., Gonzalez-Sosa, E., Neves, J.C., Proenca, H.: Facegenderid: exploiting gender information in dcnns face recognition systems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  41. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2008)

    Article  Google Scholar 

  42. Xia, Y., Cao, X., Wen, F., Hua, G., Sun, J.: Learning discriminative reconstructions for unsupervised outlier removal. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1511–1519 (2015)

    Google Scholar 

  43. You, C., Robinson, D.P., Vidal, R.: Provable self-representation based outlier detection in a union of subspaces. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  44. Zhang, H., Patel, V.M.: Sparse representation-based open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1690–1696 (2016)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the NSF grant 1910141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poojan Oza .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1675 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oza, P., Patel, V.M. (2020). Utilizing Patch-Level Category Activation Patterns for Multiple Class Novelty Detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12355. Springer, Cham. https://doi.org/10.1007/978-3-030-58607-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58607-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58606-5

  • Online ISBN: 978-3-030-58607-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics