Skip to main content

Neural Geometric Parser for Single Image Camera Calibration

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12357))

Included in the following conference series:

Abstract

We propose a neural geometric parser learning single image camera calibration for man-made scenes. Unlike previous neural approaches that rely only on semantic cues obtained from neural networks, our approach considers both semantic and geometric cues, resulting in significant accuracy improvement. The proposed framework consists of two networks. Using line segments of an image as geometric cues, the first network estimates the zenith vanishing point and generates several candidates consisting of the camera rotation and focal length. The second network evaluates each candidate based on the given image and the geometric cues, where prior knowledge of man-made scenes is used for the evaluation. With the supervision of datasets consisting of the horizontal line and focal length of the images, our networks can be trained to estimate the same camera parameters. Based on the Manhattan world assumption, we can further estimate the camera rotation and focal length in a weakly supervised manner. The experimental results reveal that the performance of our neural approach is significantly higher than that of existing state-of-the-art camera calibration techniques for single images of indoor and outdoor scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Google Street View Images API. https://developers.google.com/maps/

  2. Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)

    Article  Google Scholar 

  3. Alberti, L.B.: Della Pittura (1435)

    Google Scholar 

  4. Barinova, O., Lempitsky, V., Tretiak, E., Kohli, P.: Geometric image parsing in man-made environments. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 57–70. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_5

    Chapter  Google Scholar 

  5. Brachmann, E., et al.: DSAC – differentiable RANSAC for camera localization. In: Proceedings of CVPR, pp. 6684–6692 (2017)

    Google Scholar 

  6. Brachmann, E., Rother, C.: Neural-guided RANSAC: learning where to sample model hypotheses. In: Proceedings of ICCV, pp. 4322–4331 (2019)

    Google Scholar 

  7. Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by Bayesian inference. In: Proceedings of ICCV, pp. 941–947 (1999)

    Google Scholar 

  8. Criminisi, A., Reid, I., Zisserman, A.: Single view metrology. Int. J. Comput. Vis. 40(2), 123–148 (2000)

    Article  Google Scholar 

  9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of CVPR, pp. 5828–5839 (2017)

    Google Scholar 

  10. Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating manhattan frames in urban imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_15

    Chapter  Google Scholar 

  11. Fischer, P., Dosovitskiy, A., Brox, T.: Image orientation estimation with convolutional networks. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 368–378. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_30

    Chapter  Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)

    Article  Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2 edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. Hold-Geoffroy, Y., et al.: A perceptual measure for deep single image camera calibration. In: Proceedings of CVPR, pp. 2354–2363 (2018)

    Google Scholar 

  17. Kluger, F., Brachmann, E., Ackermann, H., Rother, C., Yang, M.Y., Rosenhahn, B.: CONSAC: robust multi-model fitting by conditional sample consensus. In: Proceedings of CVPR, pp. 4633–4642 (2020)

    Google Scholar 

  18. Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_32

    Chapter  Google Scholar 

  19. Lee, H., Shechtman, E., Wang, J., Lee, S.: Automatic upright adjustment of photographs with robust camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 36(5), 833–844 (2014)

    Article  Google Scholar 

  20. Li, H., Zhao, J., Bazin, J.C., Chen, W., Liu, Z., Liu, Y.H.: Quasi-globally optimal and efficient vanishing point estimation in manhattan world. In: Proceedings of ICCV, pp. 1646–1654 (2019)

    Google Scholar 

  21. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models. Springer, Heidelberg (2004). https://doi.org/10.1007/978-0-387-21779-6

  22. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of CVPR, pp. 652–660 (2017)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Schindler, G., Dellaert, F.: Atlanta world: an expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: Proceedings of CVPR (2004)

    Google Scholar 

  25. Simon, G., Fond, A., Berger, M.-O.: A-Contrario horizon-first vanishing point detection using second-order grouping laws. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 323–338. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_20

    Chapter  Google Scholar 

  26. Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: Proceedings of ICCV, pp. 1250–1257 (2009)

    Google Scholar 

  27. Tretyak, E., Barinova, O., Kohli, P., Lempitsky, V.: Geometric image parsing in man-made environments. Int. J. Comput. Vis. 97(3), 305–321 (2012)

    Article  Google Scholar 

  28. Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of manhattan worlds. In: Proceedings of CVPR, pp. 2831–2838 (2012)

    Google Scholar 

  29. Workman, S., Greenwell, C., Zhai, M., Baltenberger, R., Jacobs, N.: DEEPFOCAL: a method for direct focal length estimation. In: Proceedings of ICIP, pp. 1369–1373 (2015)

    Google Scholar 

  30. Workman, S., Zhai, M., Jacobs, N.: Horizon lines in the wild. In: Proceedings of BMVC, pp. 20.1–20.12 (2016)

    Google Scholar 

  31. Xian, W., Li, Z., Fisher, M., Eisenmann, J., Shechtman, E., Snavely, N.: UprightNet: geometry-aware camera orientation estimation from single images. In: Proceedings of ICCV, pp. 9974–9983 (2019)

    Google Scholar 

  32. Xu, Y., Oh, S., Hoogs, A.: A minimum error vanishing point detection approach for uncalibrated monocular images of man-made environments. In: Proceedings of CVPR, pp. 1376–1383 (2013)

    Google Scholar 

  33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  34. Zhai, M., Workman, S., Jacobs, N.: Detecting vanishing points using global image context in a non-manhattan world. In: Proceedings of CVPR, pp. 5657–5665 (2016)

    Google Scholar 

  35. Zhou, Y., Qi, H., Huang, J., Ma, Y.: NeurVPS: neural vanishing point scanning via conic convolution. In: Proceedings of NeurIPS (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03034907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junho Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16208 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Sung, M., Lee, H., Kim, J. (2020). Neural Geometric Parser for Single Image Camera Calibration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics