Skip to main content

Multivalue Almost Collocation Methods with Diagonal Coefficient Matrix

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2020 (ICCSA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12249))

Included in the following conference series:

  • 1452 Accesses

Abstract

We introduce a family of multivalue almost collocation methods with diagonal coefficient matrix for the numerical solution of ordinary differential equations. The choice of this type of coefficient matrix permits a reduction of the computational cost and a parallel implementation. Collocation gives a continuous extension of the solution which is useful for a variable step size implementation. We provide examples of A-stable methods with two and three stages and order 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adragna, R., Cascaval, R.C., D’Arienzo, M.P., Manzo, R.: Flow simulations in the human cardiovascular system under variable conditions. In: Proceedings of EMSS 2015 (the 27th European Modelling & Simulation Symposium), Bergeggi (SV), Italia, 21–23 September 2015, pp. 228–233 (2015)

    Google Scholar 

  2. Burrage, K., Cardone, A., D’Ambrosio, R., Paternoster, B.: Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 116, 82–94 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: General linear methods. Comput. Math. Appl. 31(4–5), 105–112 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Butcher, J., D’Ambrosio, R.: Partitioned general linear methods for separable Hamiltonian problems. Appl. Numer. Math. 117, 69–86 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Butcher, J.C., Jackiewicz, Z.: Diagonally implicit general linear methods for ordinary differential equations. BIT Numer. Math. 33(3), 452–472 (1993). https://doi.org/10.1007/BF01990528

    Article  MathSciNet  MATH  Google Scholar 

  6. Butcher, J.C., Wright, W.M.: The construction of practical general linear methods. BIT Numer. Math. 43(4), 695–721 (2003). https://doi.org/10.1023/B:BITN.0000009952.71388.23

    Article  MathSciNet  MATH  Google Scholar 

  7. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    MATH  Google Scholar 

  8. Capobianco, G., Conte, D., Del Prete, I.: High performance parallel numerical methods for Volterra equations with weakly singular kernels. J. Comput. Appl. Math. 228, 571–579 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Cardone, A., Conte, D., Paternoster, B.: A family of multistep collocation methods for Volterra integro-differential equations. AIP Conf. Proc. 1168(1), 358–361 (2009)

    MATH  Google Scholar 

  10. Cardone, A., Conte, D., Patenoster, B.: Two-step collocation methods for fractional differential equations. Discrete Continuous Dyn. Syst. - B 23(7), 2709–2725 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection-diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cardone, A., D’Ambrosio, R., Paternoster, B.: High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 114C, 18–29 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Cardone, A., D’Ambrosio, R., Paternoster, B.: A spectral method for stochastic fractional differential equations. Appl. Numer. Math. 139, 115–119 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Cascaval, R.C., D’Apice, C., D’Arienzo, M.P.: Simulation of heart rate variability model in a network. In: Proceedings of International Conference of Numerical Analysis and Applied Mathematics 2016 (ICNAAM 2016), Rodi, Grecia, 19–25 September 2016, pp. 1–4 (2016). ISBN 978-0-7354-1538-6. vol. 1863, 560054 (2017)

    Google Scholar 

  15. Citro, V., D’Ambrosio, R., Di Giovacchino, S.: A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations. Appl. Math. Lett. 102, 106098 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Conte, D., Califano, G.: Optimal Schwarz waveform relaxation for fractional diffusion-wave equations. Appl. Numer. Math. 127, 125–141 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Conte, D., Capobianco, G., Paternoster, B.: Construction and implementation of two-step continuous methods for Volterra Integral Equations. Appl. Numer. Math. 119, 239–247 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Conte, D., D’Ambrosio, R., Jackiewicz, Z., Paternoster, B.: Numerical search for algebraically stable two-step continuous Runge-Kutta methods. J. Comput. Appl. Math. 239, 304–321 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Conte, D., D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted explicit two-step peer methods. J. Numer. Math. 27(2), 69–83 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Conte, D., D’Ambrosio, R., Paternoster, B.: GPU acceleration of waveform relaxation methods for large differential systems. Numer. Algorithms 71(2), 293–310 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Conte, D., D’Ambrosio, R., Paternoster, B.: On the stability of theta-methods for stochastic Volterra integral equations. Discrete Continuous Dyn. Syst. - B 23(7), 2695–2708 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Conte, D., Esposito, E., Paternoster, B., Ixaru, L.G.: Some new uses of the \(\eta _m(Z)\) functions. Comput. Phys. Commun. 181, 128–137 (2010)

    MATH  Google Scholar 

  23. Conte, D., Paternoster, B.: A family of multistep collocation methods for Volterra integral equations. In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 936, pp. 128–131. Springer, New York (2007)

    Google Scholar 

  24. Conte, D., Paternoster, B.: Modified Gauss-Laguerre exponential fitting based formulae. J. Sci. Comput. 69(1), 227–243 (2016)

    MathSciNet  MATH  Google Scholar 

  25. D’Ambrosio, R., De Martino, G., Paternoster, B.: Numerical integration of Hamiltonian problems by G-symplectic methods. Adv. Comput. Math. 40(2), 553–575 (2014)

    MathSciNet  MATH  Google Scholar 

  26. D’Ambrosio, R., De Martino, G., Paternoster, B.: General Nystrom methods in Nordsieck form: error analysis. J. Comput. Appl. Math. 292, 694–702 (2016)

    MathSciNet  MATH  Google Scholar 

  27. D’Ambrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for ordinary differential equations. Numer. Algorithms 53(2–3), 195–217 (2010)

    MathSciNet  MATH  Google Scholar 

  28. D’Ambrosio, R., Hairer, E.: Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 60(3), 627–640 (2014)

    MathSciNet  MATH  Google Scholar 

  29. D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Search for highly stable two-step Runge-Kutta methods for ODEs. Appl. Numer. Math. 62(10), 1361–1379 (2012)

    MathSciNet  MATH  Google Scholar 

  30. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts. Comput. Math. Appl. 74(5), 1029–1042 (2017)

    MathSciNet  MATH  Google Scholar 

  31. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete Continuous Dyn. Syst. - B 23(7), 2763–2773 (2018)

    MathSciNet  MATH  Google Scholar 

  32. D’Ambrosio, R., Moccaldi, M., Paternoster, B.: Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems. Comput. Phys. Commun. 226, 55–66 (2018)

    MathSciNet  Google Scholar 

  33. D’Ambrosio, R., Moccaldi, M., Paternoster, B., Rossi, F.: Adapted numerical modelling of the Belousov-Zhabotinsky reaction. J. Math. Chem. 56(10), 2867–2897 (2018)

    MathSciNet  MATH  Google Scholar 

  34. D’Ambrosio, R., Paternoster, B.: Two-step modified collocation methods with structured coefficients matrix for ordinary differential equations. Appl. Numer. Math. 62(10), 1325–1334 (2012)

    MathSciNet  MATH  Google Scholar 

  35. D’Ambrosio, R., Paternoster, B.: Numerical solution of a diffusion problem by exponentially fitted finite difference methods. SpringerPlus 3(1), 1–7 (2014). https://doi.org/10.1186/2193-1801-3-425

    Article  Google Scholar 

  36. D’Ambrosio, R., Paternoster, B.: Exponentially fitted singly diagonally implicit Runge-Kutta methods. J. Comput. Appl. Math. 263, 277–287 (2014)

    MathSciNet  MATH  Google Scholar 

  37. D’Ambrosio, R., Paternoster, B.: A general framework for numerical methods solving second order differential problems. Math. Comput. Simul. 110(1), 113–124 (2015)

    MATH  Google Scholar 

  38. D’Ambrosio, R., Paternoster, B.: Numerical solution of reaction-diffusion systems of lambda-omega type by trigonometrically fitted methods. J. Comput. Appl. Math. 294 C, 436–445 (2016)

    MATH  Google Scholar 

  39. D’Ambrosio, R., Paternoster, B.: Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. (2019). https://doi.org/10.1016/j.cam.2019.112515

    Article  MATH  Google Scholar 

  40. D’Apice, C., D’Arienzo, M.P., Kogut, P.I., Manzo, R.: On boundary optimal control problem for an arterial system: existence of feasible solutions. J. Evol. Equ. 18(4), 1745–1786 (2018). https://doi.org/10.1007/s00028-018-0460-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Enright, W.H., Jackson, K.R., Norsett, S.P., Thomsen, P.G.: Interpolants for Runge-Kutta formulas. ACM Trans. Math. Softw. 12(3), 193–218 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Enright, W.H., Muir, P.H.: Super-convergent interpolants for the collocation solution of boundary value ordinary differential equations. SIAM J. Sci. Comput. 21(1), 227–254 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II -Stiff and Differential-Algebraic Problems. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  44. Heldt, F.S., Frensing, T., Pflugmacher, A., Gropler, R., Peschel, B., Reichl, U.: Multiscale modeling of influenza a virus infection supports the development of direct-acting antivirals. PLOS Comput. Biol. 9(11), e1003372 (2013)

    Google Scholar 

  45. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  46. Jackiewicz, Z., Tracogna, S.: A general class of two-step Runge-Kutta methods for ordinary differential equations. SIAM J. Numer. Anal. 32, 1390–1427 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, Chichester (1991)

    MATH  Google Scholar 

  48. Lie, I., Norsett, S.P.: Superconvergence for multistep collocation. Math. Comput. 52(185), 65–79 (1989)

    MathSciNet  MATH  Google Scholar 

  49. Lie, I.: The stability function for multistep collocation methods. Numer. Math. 57(8), 779–787 (1990). https://doi.org/10.1007/BF01386443

    Article  MathSciNet  MATH  Google Scholar 

  50. Noble, D., Varghese, A., Kohl, P., Noble, P.: Improved guinea-pig ventricular cell model incorporating a diadic space, IKr and IKs, and length- and tension-dependent processes. Can. J. Cardiol. 14, 123–134 (1998)

    Google Scholar 

  51. Norsett, S.P.: Collocation and perturbed collocation methods. In: Watson, G.A. (ed.) Numerical Analysis. LNM, vol. 773, pp. 119–132. Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0094168

    Chapter  Google Scholar 

  52. Norsett, S.P., Wanner, G.: Perturbed collocation and Runge Kutta methods. Numer. Math. 38(2), 193–208 (1981). https://doi.org/10.1007/BF01397089

    Article  MathSciNet  MATH  Google Scholar 

  53. Paternoster, B.: Two step Runge-Kutta-Nyström methods for y” = f(x,y) and P-stability. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 459–466. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_48

    Chapter  Google Scholar 

  54. Söderlind, G., Jay, L., Calvo, M.: Stiffness 1952–2012: sixty years in search of a definition. BIT 55(2), 531–558 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Southern, J., et al.: Multi-scale computational modelling in biology and physiology. Progress Biophys. Mol. Biol. 96, 60–89 (2008)

    Google Scholar 

  56. Wright, K.: Some relationships between implicit Runge-Kutta, collocation and Lanczos \(\tau \)-methods, and their stability properties. BIT 10, 217–227 (1970). https://doi.org/10.1007/BF01936868

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are members of the GNCS group. This work is supported by GNCS-INDAM project and by PRIN2017-MIUR project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pia D’Arienzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Conte, D., D’Ambrosio, R., D’Arienzo, M.P., Paternoster, B. (2020). Multivalue Almost Collocation Methods with Diagonal Coefficient Matrix. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science(), vol 12249. Springer, Cham. https://doi.org/10.1007/978-3-030-58799-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58799-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58798-7

  • Online ISBN: 978-3-030-58799-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics