Skip to main content

TargetAnalytica: A Text Analytics Framework for Ranking Therapeutic Molecules in the Bibliome

  • Chapter
  • First Online:
Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Part of the book series: Studies in Big Data ((SBD,volume 77))

  • 2874 Accesses

Abstract

Biomedical scientists often search databases of therapeutic molecules to answer a set of molecule-related questions. When it comes to drugs, finding the most specific target is a crucial biological criterion. Whether the target is a gene, protein, and cell line, target specificity is what makes a therapeutic molecule significant. In this chapter, we present TargetAnalytica, a novel text analytics framework that is concerned with mining the biomedical literature. Starting with a set of publications of interest, the framework produces a set of biological entities related to gene, protein, RNA, cell type, and cell line. The framework is tested against a depression-related dataset for the purpose of demonstration. The analysis shows an interesting ranking that is significantly different from a counterpart based on drugs.com’s popularity factor (e.g., according to our analysis Cymbalta appears only at position #10 though it is number one in popularity according to the database). The framework is a crucial tool that identifies the targets to investigate, provides relevant specificity insights, and help decision makers and scientists to answer critical questions that are not possible otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bragazzi, N.L., Nicolini, C.: A leader genes approach-based tool for molecular genomics: from gene-ranking to gene-network systems biology and biotargets predictions. J. Comput. Sci. Syst. Biol. 6, 165–176 (2013)

    Article  Google Scholar 

  2. Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., Rümmele, P., Jahnke, B., Hentrich, V., Rückert, F., Niedergethmann, M., Weichert, W., Bahra, M., Schlitt, H.J., Settmacher, U., Friess, H., Büchler, M., Saeger, H.-D., Schroeder, M., Pilarsky, C., Grützmann, R.: Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLOS Comput. Bio. 8(5), 1–16 (2012)

    Google Scholar 

  3. Weston, J., Elisseeff, A., Zhou, D., Leslie, C.S., Noble, W.S.: Protein ranking: from local to global structure in the protein similarity network. Proc. Nat. Acad. Sci. USA 101(17), 6559–6563 (2004)

    Article  Google Scholar 

  4. Wren, J.D., Garner, H.R.: Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network. Bioinformatics 20(2), 191–198 (2004)

    Article  Google Scholar 

  5. Chen, J., Jagannatha, N.A., Fodeh, J.S., Yu, H.: Ranking medical terms to support expansion of lay language resources for patient comprehension of electronic health record notes: adapted distant supervision approach. JMIR Med. Inform. 5(4), e42 (2017)

    Article  Google Scholar 

  6. Koschützki, D., Schwöbbermeyer, H., Schreiber, F.: Ranking of network elements based on functional substructures. J. Theoret. Bio. 248(3), 471–479 (2007)

    Article  Google Scholar 

  7. Junker, B.H., Koschützki, D., Schreiber, F.: Exploration of biological network centralities with centibin. BMC Bioinform. 7(1), 219 (2006)

    Article  Google Scholar 

  8. Hamed, A.A., Leszczynska, A., MolecRank, M.S.: A specificity-based network analysis algorithm the international conference on advanced machine learning technologies and applications (AMLTA2019) (2020)

    Google Scholar 

  9. Hopkins, A.L.: Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4(11), 682–690 (2008)

    Article  MathSciNet  Google Scholar 

  10. Bodnarchuk, M.S., Heyes, D.M., Dini, D., Chahine, S., Edwards, S.: Role of deprotonation free energies in p k a prediction and molecule ranking. J. Chem. Theo. Comput. 10(6), 2537–2545 (2014)

    Article  Google Scholar 

  11. Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Nat. Acad. Sci. 44(2), 98–104 (1958)

    Article  Google Scholar 

  12. Lehninger, A., Nelson, D.L., Cox, M.M.: Lehninger principles of biochemistry. In: Freeman, W.H. 5th edn. (2008)

    Google Scholar 

  13. Wood, E.J.: Harper’s biochemistry 24th edition. In: Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. pp. 868. Appleton & lange, stamford, ct. 1996.£ 28.95 isbn 0-8385-3612-3. Biochem. Edu. 24(4), 237–237 (1996)

    Google Scholar 

  14. Hu, L., Fawcett, J.P., Gu, J.: Protein target discovery of drug and its reactive intermediate metabolite by using proteomic strategy. Acta Pharm. Sinica B 2(2), 126–136 (2012)

    Article  Google Scholar 

  15. Hefti, F.F.: Requirements for a lead compound to become a clinical candidate. BMC Neurosci. 9(3), S7 (2008)

    Article  Google Scholar 

  16. Degterev, A., Maki, J.L., Yuan, J.: Activity and specificity of necrostatin-1, small-molecule inhibitor of rip1 kinase. Cell Death Differ. 20(2), 366 (2013)

    Article  Google Scholar 

  17. Eaton, B.E., Gold, L., Zichi, D.A.: Let’s get specific: the relationship between specificity and affinity. Chem. Bio. 2(10), 633–638 (1995)

    Article  Google Scholar 

  18. Radhakrishnan, M.L., Tidor, B.: Specificity in molecular design: a physical framework for probing the determinants of binding specificity and promiscuity in a biological environment. J. Phys. Chem. B 111(47), 13419–13435 (2007)

    Article  Google Scholar 

  19. Strovel, J., Sittampalam, S., Coussens, N.P., Hughes, M., Inglese, J., Kurtz, A., Andalibi, A., Patton, L., Austin, C., Baltezor, M., et al.: Early drug discovery and development guidelines: for academic researchers, collaborators, and start-up companies (2016)

    Google Scholar 

  20. Hartley, J.A., Lown, J.W., Mattes, W.B., Kohn, K.W.: Dna sequence specificity of antitumor agents: Oncogenes as possible targets for cancer therapy. Acta Oncol. 27(5), 503–510 (1988)

    Article  Google Scholar 

  21. Timchenko, L.T., Timchenko, N.A., Caskey, C.T., Roberts, R.: Novel proteins with binding specificity for dna ctg repeats and rna cug repeats: implications for myotonic dystrophy. Hum. Mol. Genet. 5(1), 115–121 (1996)

    Article  Google Scholar 

  22. Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins, and other entity names in text. Bioinformatics 21(14), 3191–3192 (2005)

    Article  Google Scholar 

  23. Carpenter, B.: Lingpipe for 99.99% recall of gene mentions. In: Proceedings of the Second BioCreative Challenge Evaluation Workshop, vol. 23, pp. 307–309 (2007)

    Google Scholar 

  24. Candan, K.S., Liu, H., Suvarna, R.: Resource description framework: metadata and its applications. SIGKDD Explor. Newsl. 3(1), 6–19 (2001)

    Article  Google Scholar 

  25. Shannon, C.E.: Prediction and entropy of printed english. Bell Labs Tech. J. 30(1), 50–64 (1951)

    Article  Google Scholar 

  26. Koschützki, D., Schreiber, F.: Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul. Syst. bio. 2, 193 (2008)

    Google Scholar 

  27. Jeong, H., Mason, S.P., Barabási, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  28. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices, pp. 16–61. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

    Google Scholar 

  29. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  30. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  31. Zhou, Q., Womer, F.Y., Kong, L., Wu, F., Jiang, X., Zhou, Y., Wang, D., Bai, C., Chang, M., Fan, G., et al.: Trait-related cortical-subcortical dissociation in bipolar disorder: analysis of network degree centrality. J. Clin. Psychiatry 78(5), 584–591 (2017)

    Article  Google Scholar 

  32. Costenbader, E., Valente, T.W.: The stability of centrality measures when networks are sampled. Soc. Netw. 25(4), 283–307 (2003)

    Article  Google Scholar 

  33. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  34. Pretto, L.: A theoretical analysis of google’s pagerank. In: String Processing and Information Retrieval. Springer, pp. 125–136 (2002)

    Google Scholar 

Download references

Acknowledgements

The authors would like thank Dr. Mark Schreiber and Dr. Ramiro Barrantes for their valuable discussions. The authors also greatly appreciate the tremendous feedback on this work giving by Dr. Barabasi and his lab members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdeen Hamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdeen Hamed, A., Leszczynska, A., Schoenberg, M., Temesi, G., Verspoor, K. (2021). TargetAnalytica: A Text Analytics Framework for Ranking Therapeutic Molecules in the Bibliome. In: Hassanien, A.E., Darwish, A. (eds) Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges. Studies in Big Data, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-59338-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59338-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59337-7

  • Online ISBN: 978-3-030-59338-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics