Skip to main content

TADNM: A Transportation-Mode Aware Deep Neural Model for Travel Time Estimation

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12112))

Included in the following conference series:

Abstract

Travel time estimation (TTE) has been recognized as an important problem in location-based services. Existing approaches mainly estimate travel time by learning from large-scale trajectories, they normally assume a path is in a single transportation mode (e.g., driving, biking), and could not provide accurate TTE for mixed-mode paths, which are indeed common in daily life. In this paper, we propose a transportation-mode aware deep neural model called TADNM, which considers both spatio-temporal characteristics and the heterogeneity of underlying transportation modes to achieve more accurate travel time estimation. Specifically, we estimate travel time using the knowledge from (sub-)trajectories not only roughly following the target path, but also being consistent with segments of the target path in terms of transportation mode. To this end, a well-designed neural network model is proposed to integrate the rich information extracted from trajectories first, and then to learn effective representations for capturing the spatial correlations, temporal dependencies and transportation mode effects from the trajectory data. Besides, the proposed model fully considers the transition time of switching transportation mode in the path, and a transportation-mode aware attention mechanism is used to better reflect the impact of transportation mode to the required travel time. Extensive experiments on real trajectory datasets demonstrate the effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: Encoder-decoder approaches. CoRR abs/1409.1259 (2014). http://arxiv.org/abs/1409.1259

  2. Dai, J., Liu, C., Xu, J., Ding, Z.: On personalized and sequenced route planning. World Wide Web 19(4), 679–705 (2015). https://doi.org/10.1007/s11280-015-0352-2

    Article  Google Scholar 

  3. Endo, Y., Toda, H., Nishida, K., Kawanobe, A.: Deep feature extraction from trajectories for transportation mode estimation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 54–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31750-2_5

    Chapter  Google Scholar 

  4. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  5. Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  6. Jenelius, E., Koutsopoulos, H.N.: Travel time estimation for urban road networks using low frequency probe vehicle data. Transp. Res. Part B Methodol. 53, 64–81 (2013)

    Article  Google Scholar 

  7. Jindal, I., Qin, T., Chen, X., Nokleby, M.S., Ye, J.: A unified neural network approach for estimating travel time and distance for a taxi trip. CoRR abs/1710.04350 (2017)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  9. Kisialiou, Y., Gribkovskaia, I., Laporte, G.: The periodic supply vessel planning problem with flexible departure times and coupled vessels. Comput. Oper. Res. 94, 52–64 (2018)

    Article  MathSciNet  Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  11. Li, Y., Fu, K., Wang, Z., Shahabi, C., Ye, J., Liu, Y.: Multi-task representation learning for travel time estimation. In: KDD, pp. 1695–1704. ACM (2018)

    Google Scholar 

  12. Li, Y., Liu, C., Liu, K., Xu, J., He, F., Ding, Z.: On efficient map-matching according to intersections you pass by. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013. LNCS, vol. 8056, pp. 42–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40173-2_6

    Chapter  Google Scholar 

  13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)

    Google Scholar 

  14. Rahmani, M., Jenelius, E., Koutsopoulos, H.N.: Route travel time estimation using low-frequency floating car data. In: ITSC, pp. 2292–2297. IEEE (2013)

    Google Scholar 

  15. Shang, S., Liu, J., Zheng, K., Lu, H., Pedersen, T.B., Wen, J.-R.: Planning unobstructed paths in traffic-aware spatial networks. GeoInformatica 19(4), 723–746 (2015). https://doi.org/10.1007/s10707-015-0227-9

    Article  Google Scholar 

  16. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

  17. Wang, D., Zhang, J., Cao, W., Li, J., Zheng, Y.: When will you arrive? estimating travel time based on deep neural networks. In: AAAI, pp. 2500–2507. AAAI Press (2018)

    Google Scholar 

  18. Wang, H., Kuo, Y., Kifer, D., Li, Z.: A simple baseline for travel time estimation using large-scale trip data. In: SIGSPATIALGIS, pp. 61:1–61:4. ACM (2016)

    Google Scholar 

  19. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajectories. In: KDD, pp. 25–34. ACM (2014)

    Google Scholar 

  20. Wang, Z., Fu, K., Ye, J.: Learning to estimate the travel time. In: KDD, pp. 858–866 (2018)

    Google Scholar 

  21. Xu, J., Chen, J., Zhou, R., Fang, J., Liu, C.: On workflow aware location-based service composition for personal trip planning. Future Gener. Comput. Syst. 98, 274–285 (2019)

    Article  Google Scholar 

  22. Xu, J., Gao, Y., Liu, C., Zhao, L., Ding, Z.: Efficient route search on hierarchical dynamic road networks. Distrib. Parallel Databases 33(2), 227–252 (2014). https://doi.org/10.1007/s10619-014-7146-x

    Article  Google Scholar 

  23. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio-temporally correlated time series using Markov models. PVLDB 6(9), 769–780 (2013)

    Google Scholar 

  24. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE Trans. Knowl. Data Eng. 25(10), 2390–2403 (2013)

    Article  Google Scholar 

  25. Zhang, H., Wu, H., Sun, W., Zheng, B.: Deeptravel: a neural network based travel time estimation model with auxiliary supervision. In: IJCAI, pp. 3655–3661 (2018)

    Google Scholar 

  26. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding mobility based on GPS data. In: UbiComp. ACM International Conference Proceeding Series, vol. 344, pp. 312–321. ACM (2008)

    Google Scholar 

  27. Zheng, Y., Xie, X., Ma, W.: Geolife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

    Google Scholar 

  28. Zheng, Y., Zhang, L., Xie, X., Ma, W.: Mining interesting locations and travel sequences from GPS trajectories. In: WWW, pp. 791–800. ACM (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61872258, 61772356, 61876117, and 61802273, the Australian Research Council discovery projects under grant numbers DP170104747, DP180100212, the Open Program of State Key Laboratory of Software Architecture under item number SKLSAOP1801 and Blockshine corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Xu, J., Zhou, R., Liu, C., Li, Z., Liu, A. (2020). TADNM: A Transportation-Mode Aware Deep Neural Model for Travel Time Estimation. In: Nah, Y., Cui, B., Lee, SW., Yu, J.X., Moon, YS., Whang, S.E. (eds) Database Systems for Advanced Applications. DASFAA 2020. Lecture Notes in Computer Science(), vol 12112. Springer, Cham. https://doi.org/10.1007/978-3-030-59410-7_32

Download citation

Publish with us

Policies and ethics