Skip to main content

Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

The Blood-Oxygen-Level-Dependent (BOLD) signal of resting-state fMRI (rs-fMRI) records the temporal dynamics of intrinsic functional networks in the brain. However, existing deep learning methods applied to rs-fMRI either neglect the functional dependency between different brain regions in a network or discard the information in the temporal dynamics of brain activity. To overcome those shortcomings, we propose to formulate functional connectivity networks within the context of spatio-temporal graphs. We train a spatio-temporal graph convolutional network (ST-GCN) on short sub-sequences of the BOLD time series to model the non-stationary nature of functional connectivity. Simultaneously, the model learns the importance of graph edges within ST-GCN to gain insight into the functional connectivities contributing to the prediction. In analyzing the rs-fMRI of the Human Connectome Project (HCP, N = 1,091) and the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA, N = 773), ST-GCN is significantly more accurate than common approaches in predicting gender and age based on BOLD signals. Furthermore, the brain regions and functional connections significantly contributing to the predictions of our model are important markers according to the neuroscience literature.

S. Gadgil and Q. Zhao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available at https://github.com/sgadgil6/cnslab_fmri.

  2. 2.

    The 87% accuracy in [19] on 131 HCP subjects was based on multi-modal data.

References

  1. Allen, E., Damaraju, E., Plis, S., Erhardt, E., Eichele, T., Calhoun, V.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014). https://doi.org/10.1093/cercor/bhs352

    Article  Google Scholar 

  2. Brown, S., Brumback, T., Tomlinson, K., et al.: The national consortium on alcohol and neurodevelopment in adolescence (NCANDA): a multisite study of adolescent development and substance use. J. Stud. Alcohol Drugs. 76(6), 895–908 (2015). https://doi.org/10.15288/jsad.2015.76.895

    Article  Google Scholar 

  3. Buckner, R., Krienen, F., Yeo, B.: Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 16(7), 832–837 (2013)

    Article  Google Scholar 

  4. Conrin, S.D., et al.: From default mode network to the basal configuration: sex differences in the resting-state brain connectivity as a function of age and their clinical correlates. Front. Psychiatry 9, 365 (2018)

    Article  Google Scholar 

  5. Covert, I., et al.: Temporal graph convolutional networks for automatic seizure detection. In: Machine Learning for HealthCare (2019)

    Google Scholar 

  6. Cui, Y., et al.: Identifying brain networks of multiple time scales via deep recurrent neural network. In: 21st International Conference, Granada, Spain, September 16–20, 2018, Proceedings, Part III, pp. 284–292 (September 2018)

    Google Scholar 

  7. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Wang, Q., Shi, Y., Suk, H.-I., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 362–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_42

    Chapter  Google Scholar 

  8. Glasser, M., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Article  Google Scholar 

  9. Glasser, M., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.127

    Article  Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  12. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012). https://doi.org/10.3389/fnins.2012.00171

    Article  Google Scholar 

  13. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  14. Li, H., Fan, Y.: Brain decoding from functional MRI using long short-term memory recurrent neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 320–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_37

    Chapter  Google Scholar 

  15. Li, H., Satterthwaite, T.D., Fan, Y.: Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. In: ISBI (2018)

    Google Scholar 

  16. Li, X., Dvornek, N.C., Zhou, Y., Zhuang, J., Ventola, P., Duncan, J.S.: Graph neural network for interpreting Task-fMRI biomarkers. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 485–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_54

    Chapter  Google Scholar 

  17. Marrelec, G., et al.: Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32(1), 228–237 (2006)

    Article  Google Scholar 

  18. Müller-Oehring, E., et al.: Influences of age, sex, and moderate alcohol drinking on the intrinsic functional architecture of adolescent brains. Cereb. Cortex 28, 1–15 (2017). https://doi.org/10.1093/cercor/bhx014

    Article  Google Scholar 

  19. Smith, S.M., Vidaurre, D., Beckmann, C.F., et al.: Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17(12), 666–682 (2013)

    Article  Google Scholar 

  20. Taghia, J., Ryali, S., et al.: Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI. NeuroImage 155, 271–290 (2017). https://doi.org/10.1016/j.neuroimage.2017.02.083

    Article  Google Scholar 

  21. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  22. Weis, S., Patil, K.R., Hoffstaedter, F., Nostro, A., Yeo, B.T.T., Eickhoff, S.B.: Sex classification by resting state brain connectivity. Cereb. Cortex 30, 824 (2019). https://doi.org/10.1093/cercor/bhz129

    Article  Google Scholar 

  23. Westlye, L., et al.: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20, 2055–68 (2010). https://doi.org/10.1093/cercor/bhp280

    Article  Google Scholar 

  24. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)

    Google Scholar 

  25. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI (2018)

    Google Scholar 

  26. Zhang, Y., Bellec, P.: Functional annotation of human cognitive states using graph convolution networks. In: NeurIPS 2019 Workshop Neuro AI (2019)

    Google Scholar 

  27. Zhao, Q., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M.: Confounder-aware visualization of ConvNets. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 328–336. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_38

    Chapter  Google Scholar 

  28. Zhao, Q., Honnorat, N., Adeli, E., Pfefferbaum, A., Sullivan, E.V., Pohl, K.M.: Variational autoencoder with truncated mixture of Gaussians for functional connectivity analysis. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 867–879. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_68

    Chapter  Google Scholar 

  29. Zhao, Q., et al.: Longitudinally consistent estimates of intrinsic functional networks. Hum. Brain Mapp. 40, 2511–2528 (2019). https://doi.org/10.1002/hbm.24541

    Article  Google Scholar 

  30. Zhao, Y., et al.: Modeling 4D fMRI data via spatio-temporal convolutional neural networks (ST-CNN). In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 181–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_21

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was supported in part by NIH grants AA021697, AA005965, AA013521, and AA010723.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M. (2020). Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics