Skip to main content

Phase Coherence of Finger Skin Blood Flow Oscillations Induced by Controlled Breathing in Humans

  • Chapter
  • First Online:
Physics of Biological Oscillators

Abstract

The influence of deep controlled breathing on phase coherence of respiratory-related skin blood flow oscillations of left and right finger-pad forefingers in 29 healthy young females was studied. Breathing was controlled on both rate (0.25, 0.16, 0.1, 0.07 and 0.05 Hz) and depth (40% of the maximal chest excursion). The correlation degree between the phases of respiratory-related skin blood flow oscillations of left and right fingers was estimated from the value of wavelet phase coherence . We obtained the significant increase of phase coherence for all analyzed frequencies of controlled breathing as compared to spontaneous one. The maximal increase was observed for controlled breathing at 0.25 Hz, at a frequency close to the spontaneous one. We suggest that the observed effects are primarily due to an increase of breathing depth. Under spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. The results obtained can be attributed to the effects of the autonomic nervous system on vascular tone regulation under controlled breathing .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Allen, J.R. Frame, A. Murray, Microvascular blood flow and skin temperature changes in the fingers following a deep nspiratory gasp. Physiol. Meas. 23(2), 365–373 (2002). https://doi.org/10.1088/0967-3334/23/2/312

    Article  Google Scholar 

  2. A. Angelone, N.A. Coulter Jr., Respiratory sinus arrhythemia: a frequency dependent phenomenon. J. Appl. Physiol. 19, 479–482 (1964). https://doi.org/10.1152/jappl.1964.19.3.479

    Article  Google Scholar 

  3. A. Bandrivskyy, A. Bernjak, P. McClintock, A. Stefanovska, Wavelet phase coherence analysis: application to skin temperature and blood flow. Cardiovasc. Eng.: Int. J. 4(1), 89–93 (2004). https://doi.org/10.1023/B:CARE.0000025126.63253.43

    Article  Google Scholar 

  4. W.M. Bayliss, On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. 28(3), 220–231 (1902). https://doi.org/10.1113/jphysiol.1902.sp000911

    Article  Google Scholar 

  5. L. Bernardi, A. Radaelli, P.L. Solda, A.J. Coats, M. Reeder, A. Calciati, C.S. Garrard, P. Sleight, Autonomic control of skin microvessels: assessment by power spectrum of photoplethysmographic waves. Clin. Sci. (Lond.) 90(5), 345–355 (1996). https://doi.org/10.1042/cs0900345

    Article  Google Scholar 

  6. A. Bollinger, A. Yanar, U. Hoffmann, U.K. Franzeck, Is high-frequency flux motion due to respiration or to vasomotion activity. Progr. Appl. Micr. 20, 52–58 (1993)

    Google Scholar 

  7. J.H. Costa-Silva, D.B. Zoccal, B.H. Machado, Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J. Neurophysiol. 103(4), 2095–2106 (2010). https://doi.org/10.1152/jn.00802.2009

    Article  Google Scholar 

  8. F. Khan, V.A. Spence, S.B. Wilson, N.C. Abbot, Quantification of sympathetic vascular responses in skin by laser Doppler flowmetry. Int. J. Microcirc. Clin. Exp. 10(2), 145–153 (1991)

    Google Scholar 

  9. G.V. Krasnikov, M.Y. Tyurina, A.V. Tankanag, G.M. Piskunova, N.K. Chemeris, Analysis of heart rate variability and skin blood flow oscillations under deep controlled breathing. Respir. Physiol. Neurobiol. 185(3), 562–570 (2013). https://doi.org/10.1016/j.resp.2012.11.007

    Article  Google Scholar 

  10. A.I. Krupatkin, Blood flow oscillations at a frequency of about 0.1 Hz in skin microvessels do not reflect the sympathetic regulation of their tone. Hum. Physiol. 35(2):183–191 (2009). https://doi.org/10.1134/S036211970902008X

  11. H.N. Mayrovitz, E.E. Groseclose, Inspiration-induced vascular responses in finger dorsum skin. Microvasc. Res. 63(2), 227–232 (2002). https://doi.org/10.1006/mvre.2001.2391

    Article  Google Scholar 

  12. D.J. Meredith, D. Clifton, P. Charlton, J. Brooks, C.W. Pugh, L. Tarassenko, Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. J. Med. Eng. Technol. 36(1), 1–7 (2012). https://doi.org/10.3109/03091902.2011.638965

    Article  Google Scholar 

  13. T. Miyawaki, J. Minson, L. Arnolda, J. Chalmers, I. Llewellyn-Smith, P. Pilowsky, Role of excitatory amino acid receptors in cardiorespiratory coupling in ventrolateral medulla. Am. J. Physiol. 271(5 Pt 2), R1221-1230 (1996). https://doi.org/10.1152/ajpregu.1996.271.5.R1221

    Article  Google Scholar 

  14. I.A. Mizeva, Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating, in IOP Conference Series: Materials Science and Engineering, 208, 012027 (2017). https://doi.org/10.1088/1757-899X/208/1/012027

  15. L. Nilsson, A. Johansson, S. Kalman, Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal. Physiol. Meas. 24(4), 925–937 (2003). https://doi.org/10.1088/0967-3334/24/4/009

    Article  Google Scholar 

  16. M. Nitzan, I. Faib, H. Friedman, Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography. J. Biomed. Opt. 11(4), 040506 (2006). https://doi.org/10.1117/1.2236285

    Article  ADS  Google Scholar 

  17. A. Perrella, M. Sorelli, F. Giardini, L. Frassineti, P. Francia, L. Bocchi, Wavelet phase coherence between the microvascular pulse contour and the respiratory activity. Ifmbe. Proc. 68(2), 311–314 (2019). https://doi.org/10.1007/978-981-10-9038-7_58

    Article  Google Scholar 

  18. A.V. Tankanag, A.A. Grinevich, T.V. Kirilina, G.V. Krasnikov, G.M. Piskunova, N.K. Chemeris, Wavelet phase coherence analysis of the skin blood flow oscillations in human. Microvasc. Res. 95, 53–59 (2014). https://doi.org/10.1016/j.mvr.2014.07.003

    Article  Google Scholar 

  19. A.V. Tankanag, A.A. Grinevich, I.V. Tikhonova, A.V. Chaplygina, N.K. Chemeris, Phase synchronization of skin blood flow oscillations in humans under asymmetric local heating. Biophysics 62(4), 629–635 (2017). https://doi.org/10.1134/S0006350917040212

    Article  Google Scholar 

  20. J.A. Taylor, C.W. Myers, J.R. Halliwill, H. Seidel, D.L. Eckberg, Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am. J. Physiol. Heart. Circ. Physiol. 280(6), H2804-2814 (2001). https://doi.org/10.1152/ajpheart.2001.280.6.H2804

    Article  Google Scholar 

  21. V. Ticcinelli, T. Stankovski, D. Iatsenko, A. Bernjak, A.E. Bradbury, A.R. Gallagher, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Coherence and coupling functions reveal microvascular impairment in treated hypertension. Front. Physiol. 8, 749 (2017). https://doi.org/10.3389/fphys.2017.00749

    Article  Google Scholar 

  22. L. Xie, B. Liu, X. Wang, M. Mei, M. Li, X. Yu, Zhang J (2017) Effects of different stresses on cardiac autonomic control and cardiovascular coupling. J. Appl. Physiol. 122(3), 435–445 (1985). https://doi.org/10.1152/japplphysiol.00245.2016

    Article  Google Scholar 

  23. D.B. Zoccal, A.E. Simms, L.G. Bonagamba, V.A. Braga, A.E. Pickering, J.F. Paton, B.H. Machado, Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J. Physiol. 586(13), 3253–3265 (2008). https://doi.org/10.1113/jphysiol.2008.154187

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the participants for their time and commitment to the study. The work is supported by the Russian Foundation for Basic Research (grant # 18-015-00292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arina V. Tankanag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tankanag, A.V., Krasnikov, G.V., Chemeris, N.K. (2021). Phase Coherence of Finger Skin Blood Flow Oscillations Induced by Controlled Breathing in Humans. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_18

Download citation

Publish with us

Policies and ethics