Skip to main content

Complete Deep Computer-Vision Methodology for Investigating Hydrodynamic Instabilities

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12321))

Included in the following conference series:

Abstract

In fluid dynamics, one of the most important research fields is hydrodynamic instabilities and their evolution in different flow regimes. The investigation of said instabilities is concerned with highly non-linear dynamics. Currently, three main methods are used for understanding of such phenomena – namely analytical and statistical models, experiments, and simulations – and all of them are primarily investigated and correlated using human expertise. This work demonstrates how a major portion of this research effort could and should be analysed using recent breakthrough advancements in the field of Computer Vision with Deep Learning (CVDL, or Deep Computer-Vision). Specifically, this work targets and evaluates specific state-of-the-art techniques – such as Image Retrieval, Template Matching, Parameters Regression and Spatiotemporal Prediction – for the quantitative and qualitative benefits they provide. In order to do so, this research focuses mainly on one of the most representative instabilities, the Rayleigh-Taylor instability (RTI). We include an annotated database of images returned from simulations of RTI (RayleAI). Finally, adjusted experimental results and novel physical loss methodologies were used to validate the correspondence of the predicted results to actual physical reality to evaluate the model efficiency. The techniques which were developed and proved in this work can serve as essential tools for physicists in the field of hydrodynamics for investigating a variety of physical systems. Some of them can be easily applied on already existing simulation results, while others could be used via Transfer Learning to other instabilities research. All models as well as the dataset that was created for this work, are publicly available at: https://github.com/scientific-computing-nrcn/SimulAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharp, D.H.: Overview of Rayleigh-Taylor instability. Technical report, Los Alamos National Lab., NM (USA) (1983)

    Google Scholar 

  2. Drazin, P.G.: Introduction to Hydrodynamic Stability, vol. 32. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  3. Read, K.I.: Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Phys. D Nonlinear Phenom. 12, 45–58 (1984)

    Article  Google Scholar 

  4. Dalziel, S.B.: Rayleigh-Taylor instability: experiments with image analysis. Dyn. Atmos. Ocean. 20(1–2), 127–153 (1993)

    Article  Google Scholar 

  5. Dimonte, G., Schneider, M.: Turbulent Rayleigh-Taylor instability experiments with variable acceleration. Phys. Rev. E 54(4), 3740 (1996)

    Article  Google Scholar 

  6. Waddell, J.T., Niederhaus, C.E., Jacobs, J.W.: Experimental study of Rayleigh-Taylor instability: low Atwood number liquid systems with single-mode initial perturbations. Phys. Fluids 13(5), 1263–1273 (2001)

    Article  MATH  Google Scholar 

  7. Knauer, J.P., et al.: Single-mode, Rayleigh-Taylor growth-rate measurements on the omega laser system. Phys. Plasmas 7(1), 338–345 (2000)

    Article  Google Scholar 

  8. Remington, B.A., et al.: Rayleigh-Taylor instabilities in high-energy density settings on the national ignition facility. Proc. Natl. Acad. Sci. 116(37), 18233–18238 (2019)

    Article  Google Scholar 

  9. Goncharov, V.N.: Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88(13), 134502 (2002)

    Article  Google Scholar 

  10. Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Phys. D Nonlinear Phenom. 12(1–3), 32–44 (1984)

    Article  Google Scholar 

  11. Spears, B.K., et al.: Deep learning: a guide for practitioners in the physical sciences. Phys. Plasmas 25(8), 080901 (2018)

    Article  Google Scholar 

  12. Humbird, K.D., Peterson, J.L., Spears, B.K., McClarren, R.G.: Transfer learning to model inertial confinement fusion experiments. IEEE Trans. Plasma Sci. 48, 61–70 (2019)

    Article  Google Scholar 

  13. Gonoskov, A., Wallin, E., Polovinkin, A., Meyerov, I.: Employing machine learning for theory validation and identification of experimental conditions in laser-plasma physics. Sci. Rep. 9(1), 7043 (2019)

    Article  Google Scholar 

  14. Avaria, G., et al.: Hard X-ray emission detection using deep learning analysis of the radiated UHF electromagnetic signal from a plasma focus discharge. IEEE Access 7, 74899–74908 (2019)

    Article  Google Scholar 

  15. Humbird, K.D.: Machine learning guided discovery and design for inertial confinement fusion. PhD thesis (2019)

    Google Scholar 

  16. Gaffney, J.A., et al.: Making inertial confinement fusion models more predictive. Phys. Plasmas 26(8), 082704 (2019)

    Article  Google Scholar 

  17. Kustowski, B., Gaffney, J.A., Spears, B.K., Anderson, G.J., Thiagarajan, J.J., Anirudh, R.: Transfer learning as a tool for reducing simulation bias: application to inertial confinement fusion. IEEE Trans. Plasma Sci. 48, 46–53 (2019)

    Article  Google Scholar 

  18. Kim, Y.J., Lee, M., Lee, H.J.: Machine learning analysis for the soliton formation in resonant nonlinear three-wave interactions. J. Korean Phys. Soc. 75(11), 909–916 (2019). https://doi.org/10.3938/jkps.75.909

    Article  Google Scholar 

  19. Gonoskov, A.: Employing machine learning in theoretical and experimental studies of high-intensity laser-plasma interactions (2019)

    Google Scholar 

  20. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Raissi, M., Wang, Z., Triantafyllou, M.S., Karniadakis, G.E.: Deep learning of vortex-induced vibrations. J. Fluid Mech. 861, 119–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mohan, A.T., Gaitonde, D.V.: A deep learning based approach to reduced order modeling for turbulent flow control using lstm neural networks. arXiv preprint arXiv:1804.09269 (2018)

  23. Wang, Z., et al.: Model identification of reduced order fluid dynamics systems using deep learning. Int. J. Numer. Methods Fluids 86(4), 255–268 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lye, K.O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dynamics. J. Comput. Phys. 410, 109339 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nathan Kutz, J.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017)

    Article  MATH  Google Scholar 

  26. Huang, H., Xiao, B., Xiong, H., Zeming, W., Yadong, M., Song, H.: Applications of deep learning to relativistic hydrodynamics. Nucl. Phys. A 982, 927–930 (2019)

    Article  Google Scholar 

  27. Wan, W.C., et al.: Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow. Phys. Rev. Lett. 115(14), 145001 (2015)

    Article  Google Scholar 

  28. Fryxell, B., et al.: The possible effects of magnetic fields on laser experiments of Rayleigh-Taylor instabilities. High Energy Density Phys. 6(2), 162–165 (2010)

    Article  Google Scholar 

  29. Kuranz, C.C., et al.: How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants. Nat. Commun. 9(1), 1–6 (2018)

    Article  Google Scholar 

  30. Huntington, C.M., et al.: Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. Phys. Plasmas 25(5), 052118 (2018)

    Article  Google Scholar 

  31. RayleAI Database. https://github.com/scientific-computing-nrcn/RayleAI

  32. Klein, Y.: Construction of a multidimensional parallel adaptive mesh refinement special relativistic hydrodynamics code for astrophysical applications. Master’s Thesis (2010)

    Google Scholar 

  33. Wan, W.C., et al.: Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow. Phys. Plasmas 24(5), 055705 (2017)

    Article  Google Scholar 

  34. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  35. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  36. Gan-Image-Similarity code repository. https://github.com/marcbelmont/gan-image-similarity

  37. Chatzichristofis, S.A., Lux, M.: Lire: Lucene image retrieval - an extensible Java CBIR library (2008)

    Google Scholar 

  38. The Apache Lucene project. https://lucene.apache.org

  39. Zhang, D., Wong, A., Indrawan, M., Lu, G.: Content-based image retrieval using Gabor texture features. IEEE Trans. Pami 13, 13–15 (2000)

    Google Scholar 

  40. Thanamani, A.S., Haridas, K.: Well-organized content based image retrieval system in RGB color histogram, Tamura texture and Gabor feature (2014)

    Google Scholar 

  41. Chatzichristofis, S.A., Boutalis, Y.S.: FCTH: fuzzy color and texture histogram-a low level feature for accurate image retrieval. In: 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services, pp. 191–196. IEEE (2008)

    Google Scholar 

  42. Lathuilière, S., Mesejo, P., Alameda-Pineda, X., Horaud, R.: A comprehensive analysis of deep regression. IEEE Trans. Pattern Anal. Mach. Intell. 42(9), 2065–2081 (2019)

    Article  Google Scholar 

  43. Fischer, P., Dosovitskiy, A., Brox, T.: Image orientation estimation with convolutional networks. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 368–378. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24947-6_30

    Chapter  Google Scholar 

  44. Mahendran, S., Ali, H., Vidal, R.: 3D pose regression using convolutional neural networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2174–2182 (2017)

    Google Scholar 

  45. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  46. Brunelli, R.: Template Matching Techniques in Computer Vision: Theory and Practice. Wiley, Hoboken (2009)

    Book  Google Scholar 

  47. Raof, R.A.A., Nazren , A.B.A., Wafi, N.M., Hisham, M.B., Yaakob, S.N.: Template matching using sum of squared difference and normalized cross correlation. In: 2015 IEEE Student Conference on Research and Development (SCOReD). IEEE (2015)

    Google Scholar 

  48. Abd-Almageed, W., Natarajan, P., Cheng, J., Wu, Y.: QATM: quality-aware template matching for deep learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2019)

    Google Scholar 

  49. Shi, X., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  50. Wang, Y., Long, M., Wang, J., Gao, Z., Philip, S.Y.: PredRNN: recurrent neural networks for predictive learning using spatiotemporal Lstms. In: Advances in Neural Information Processing Systems, pp. 879–888 (2017)

    Google Scholar 

  51. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 29 (2004)

    Google Scholar 

  52. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  53. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  54. Shimony, A., et al.: Construction and validation of a statistical model for the nonlinear Kelvin-Helmholtz instability under compressible, multimode conditions. Phys. Plasmas 25(12), 122112 (2018)

    Article  Google Scholar 

  55. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  56. NegevHPC Project. http://www.negevhpc.com

Download references

Acknowledgments

This work was supported by the Lynn and William Frankel Center for Computer Science. Computational support was provided by the NegevHPC project [56].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harel, R., Rusanovsky, M., Fridman, Y., Shimony, A., Oren, G. (2020). Complete Deep Computer-Vision Methodology for Investigating Hydrodynamic Instabilities. In: Jagode, H., Anzt, H., Juckeland, G., Ltaief, H. (eds) High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science(), vol 12321. Springer, Cham. https://doi.org/10.1007/978-3-030-59851-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59851-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59850-1

  • Online ISBN: 978-3-030-59851-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics