Skip to main content

Automatic Pre- and Postconditions for Partial Differential Equations

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12289))

Included in the following conference series:

  • 426 Accesses

Abstract

Based on a simple automata-theoretic and algebraic framework, we study equational reasoning for Initial Value Problems (IVPs) of polynomial Partial Differential Equations (PDEs). In order to represent IVPs in their full generality, we introduce stratified systems, where function definitions can be decomposed into distinct subsystems, focusing on different subsets of independent variables. Under a certain coherence condition, for such stratified systems we prove existence and uniqueness of formal power series solutions, which conservatively extend the classical analytic ones. We then give a—in a precise sense, complete—algorithm to compute weakest preconditions and strongest postconditions for such systems. To some extent, this result reduces equational reasoning on PDE initial value (and boundary) problems to algebraic reasoning. We illustrate some experiments conducted with a proof-of-concept implementation of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In general, we shall adopt for monomials the same notation we use for strings, as the context is sufficient to disambiguate. In particular, we overload the symbol \(\epsilon \) to denote both the empty string and the unit monomial. When \(X=\emptyset \), \(X^\otimes {\mathop {=}\limits ^{\triangle }}\{\epsilon \}\).

  2. 2.

    Real arithmetic expressions will be used as a meta-notation for polynomials: e.g. \((u+u_x+1)\cdot (x+u_y)\) denotes the polynomial \(xu+uu_y+xu_x+u_xu_y+x+u_y\).

  3. 3.

    Specifically, \(\psi _0(E)(\epsilon )=E(u_0)\) for each \(E\in \mathrm{I\!R}[u]\).

  4. 4.

    In fact, more is true: \(\rightarrow _H\) is terminating and confluent, so there is a unique H-normal form F s.t. \(E\rightarrow ^*_H F\). See [13, App. A]. Therefore the arbitrariness in Definition 7 is only apparent.

  5. 5.

    Linear expressions with a constant term, such as \(2+5a_1 +42a_2-3a_3\) are not allowed.

  6. 6.

    Additional examples, concerning conservation laws and boundary problems, are reported in [13]. Code and examples are available at https://github.com/micheleatunifi/PDEPY/blob/master/PDE.py. Execution times reported here are for a Python Anaconda distribution running under Windows 10 on a Surface Pro laptop.

References

  1. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation using Gröbner bases. In: POPL 2004. ACM (2004)

    Google Scholar 

  2. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed points. In: HSCC 2010, pp. 221–230. ACM (2010)

    Google Scholar 

  3. Platzer, A.: Logics of dynamical systems. In: LICS 2012, pp. 13–24. IEEE (2012)

    Google Scholar 

  4. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_19. http://reports-archive.adm.cs.cmu.edu/anon/2013/CMU-CS-13-129.pdf

    Chapter  Google Scholar 

  5. Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.: Safety verification of nonlinear hybrid systems based on invariant clusters. In: HSCC 2017, pp. 163–172. ACM (2017)

    Google Scholar 

  6. Boreale, M.: Algorithms for exact and approximate linear abstractions of polynomial continuous systems. In: HSCC 2018, pp. 207–216. ACM (2018)

    Google Scholar 

  7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. Theor. Comput. Sci. 777, 132–154 (2019)

    Article  MathSciNet  Google Scholar 

  8. Claudel, C.G., Bayen, A.M.: Solutions to switched Hamilton-Jacobi equations and conservation laws using hybrid components. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 101–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78929-1_8

    Chapter  MATH  Google Scholar 

  9. Platzer, A.: Differential hybrid games. ACM Trans. Comput. Log 18(3), 19–44 (2017)

    Article  MathSciNet  Google Scholar 

  10. Boreale, M.: On the coalgebra of partial differential equations. In: MFCS 2019, LIPIcs, vol. 138, pp. 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://drops.dagstuhl.de/opus/volltexte/2019/10968/pdf/LIPIcs-MFCS-2019-24.pdf

  11. Boreale, M.: Algebra, coalgebra, and minimization in polynomial differential equations. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 71–87. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_5. arXiv.org:1710.08350. Full version in Logical Methods in Computer Science 15(1)

    Chapter  MATH  Google Scholar 

  12. Boreale, M.: Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODE’S. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 442–455. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_31. Full version in Sci. Comput. Program. 193

    Chapter  MATH  Google Scholar 

  13. Boreale, M.: Automatic pre- and postconditions for partial differential equations (2020). https://github.com/micheleatunifi/PDEPY/blob/master/FullPDEprepost.pdf. Full version of the present paper

  14. Reid, G., Wittkopf, A., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)

    Article  MathSciNet  Google Scholar 

  15. Marvan, M.: Sufficient set of integrability conditions of an orthonomic system. Found. Comput. Math. 6(9), 651–674 (2009)

    Article  MathSciNet  Google Scholar 

  16. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms An Introduction to Computational Algebraic Geometry and Commutative Algebra. UTM. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

    Book  MATH  Google Scholar 

  17. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather. Rev. 43(4), 163–170 (1915)

    Article  Google Scholar 

  18. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In: Advances in Applied Mechanics, vol. 1, pp. 171–199. Elsevier (1948)

    Google Scholar 

  19. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009)

    Article  MathSciNet  Google Scholar 

  20. Robertz, D.: Formal Algorithmic Elimination for PDEs. LNM, vol. 2121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11445-3

    Book  MATH  Google Scholar 

  21. Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In: ISSAC, vol. 1999, pp. 105–112 (1999)

    Google Scholar 

  22. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symb. Comput. 43(8), 515–544 (2008)

    Article  MathSciNet  Google Scholar 

  23. Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary problems: from rewriting to parametrized Gröbner bases (2012). coRR abs/1210.2950

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Boreale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boreale, M. (2020). Automatic Pre- and Postconditions for Partial Differential Equations. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds) Quantitative Evaluation of Systems. QEST 2020. Lecture Notes in Computer Science(), vol 12289. Springer, Cham. https://doi.org/10.1007/978-3-030-59854-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59854-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59853-2

  • Online ISBN: 978-3-030-59854-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics