Skip to main content

Desktop and Virtual-Reality Training Under Varying Degrees of Task Difficulty in a Complex Search-and-Shoot Scenario

  • Conference paper
  • First Online:
HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12428))

Included in the following conference series:

Abstract

Two-dimensional (2D) desktop and three-dimensional (3D) Virtual-Reality (VR) play a significant role in providing military personnel with training environments to hone their decision-making skills. The nature of the environment (2D versus 3D) and the order of task difficulty (novice to expert or expert to novice) may influence human performance in these environments. However, an empirical evaluation of these environments and their interaction with the order of task difficulty has been less explored. The primary objective of this research was to address this gap and explore the influence of different environments (2D desktop or 3D VR) and order of task difficulty (novice to expert or expert to novice) on human performance. In a lab-based experiment, a total of 60 healthy subjects executed scenarios with novice or expert difficulty levels across both 2D desktop environments (N = 30) and 3D VR environments (N = 30). Within each environment, 15 participants executed the novice scenario first and expert scenario second, and 15 participants executed the expert scenario first and novice scenario second. Results revealed that the participants performed better in the 3D VR environment compared to the 2D desktop environment. Participants performed better due to both expert training (performance in novice second better compared to novice first) and novice training (performance in expert second better compared to expert first). The combination of a 3D VR environment with expert training first and novice training second maximized performance. We expect to use these conclusions for creating effective training environments using VR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the analysis of the interaction effect, the performance/cognitive measures were averaged across both variations of order in the task difficulty, i.e., [Novice First (N1) + Expert Second (E2)]/2 and [Expert First (E1) → Novice Second (N2)]/2.

References

  1. Jenkins, D.P., Stanton, N.A., Salmon, P.M., Walker, G.H.: A formative approach to developing synthetic environment fidelity requirements for decision-making training. Appl. Ergon. 42(5), 757–769 (2011)

    Article  Google Scholar 

  2. Gonzalez, C., Fakhari, P., Busemeyer, J.: Dynamic decision making: learning processes and new research directions. Hum. Factors 59(5), 713–721 (2017)

    Article  Google Scholar 

  3. Dreyfus, H., Dreyfus, S.E., Athanasiou, T.: Mind over machine. Simon and Schuster (2000)

    Google Scholar 

  4. Donovan, S.L., Triggs, T.: Investigating the effects of display design on unmanned underwater vehicle pilot performance (No. DSTO-TR-1931). Defense Science and Technology Organization, Maritime Platforms Division, Victoria, Australia (2006)

    Google Scholar 

  5. Donovan, S., Wharington, J., Gaylor, K., Henley, P.: Enhancing Situation Awareness for UUV Operators. ADFA, Canberra (2004)

    Google Scholar 

  6. McCarley, J.S., Wickens, C.D.: Human factors implications of UAVs in the national airspace (2005)

    Google Scholar 

  7. ter Haar, R.: Virtual reality in the military: present and future. In: 3rd Twente Student Conference IT (2005)

    Google Scholar 

  8. Adhikarla, V.K., Wozniak, P., Barsi, A., Singhal, D., Kovács, P.T., Balogh, T.: Freehand interaction with large-scale 3D map data. In: 2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE, July 2014

    Google Scholar 

  9. Rao, Akash K., Chahal, J.S., Chandra, S., Dutt, V.: Virtual-Reality Training Under Varying Degrees of Task Difficulty in a Complex Search-and-Shoot Scenario. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. 248–258. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_22

    Chapter  Google Scholar 

  10. Gonzalez, C., Dutt, V.: Instance-based learning: Integrating sampling and repeated decisions from experience. Psychol. Rev. 118(4), 523 (2011)

    Article  Google Scholar 

  11. Bjork, R.A.: Memory and metamemory considerations in the, p. 185. Knowing about knowing, Metacognition (1994)

    Google Scholar 

  12. Srivastava, P., Rimzhim, A., Vijay, P., Singh, S., Chandra, S.: Desktop VR is better than nonambulatory HMD VR for spatial learning. Front. Robot. AI 6, 50 (2019)

    Article  Google Scholar 

  13. Parmar, D., et al.: A comparative evaluation of viewing metaphors on psychophysical skills education in an interactive virtual environment. Virt. Real. 20(3), 141–157 (2016). https://doi.org/10.1007/s10055-016-0287-7

    Article  Google Scholar 

  14. Murcia-López, M., Steed, A.: The effect of environmental features, self-avatar, and immersion on object location memory in virtual environments. Front. ICT 3, 24 (2016)

    Article  Google Scholar 

  15. Rao, A.K., Pramod, B.S., Chandra, S., Dutt, V.: Influence of indirect vision and virtual reality training under varying manned/unmanned interfaces in a complex search-and-shoot simulation. In: Cassenti, D.N. (ed.) AHFE 2018. AISC, vol. 780, pp. 225–235. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94223-0_21

    Chapter  Google Scholar 

  16. Schneider, V.I., Healy, A.F., Bourne Jr., L.E.: What is learned under difficult conditions is hard to forget: contextual interference effects in foreign vocabulary acquisition, retention, and transfer. J. Mem. Lang. 46(2), 419–440 (2002)

    Article  Google Scholar 

  17. Pyc, M.A., Rawson, K.A.: Testing the retrieval effort hypothesis: Does greater difficulty correctly recalling information lead to higher levels of memory? J. Mem. Lang. 60(4), 437–447 (2009)

    Article  Google Scholar 

  18. For Building Fun: Groovy Little Games Quickly. Packt Publishing Ltd., Birmingham (2010)

    Google Scholar 

  19. Roosendaal, T., Selleri, S. (eds.): The Official Blender 2.3 Guide: Free 3D Creation Suite for Modeling, Animation, and Rendering, vol. 3. No Starch Press, San Francisco (2004)

    Google Scholar 

  20. Rao, A., Satyarthi, C., Dhankar, U., Chandra, S., Dutt, V.: Indirect visual displays: Influence of field-of-views and target-distractor base-rates on decision-making in a search-and-shoot task. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4326–4332. IEEE, October 2018

    Google Scholar 

  21. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Advances in Psychology, vol. 52, pp. 139–183. North-Holland, Amsterdam (1988)

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Defence Research and Development Organization (DRDO) titled “Development of a human performance modeling framework for visual cognitive enhancement in IVD, VR and AR paradigms” (IITM/DRDO-CARS/VD/110) to Prof. Varun Dutt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash K. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rao, A.K., Chandra, S., Dutt, V. (2020). Desktop and Virtual-Reality Training Under Varying Degrees of Task Difficulty in a Complex Search-and-Shoot Scenario. In: Stephanidis, C., Chen, J.Y.C., Fragomeni, G. (eds) HCI International 2020 – Late Breaking Papers: Virtual and Augmented Reality. HCII 2020. Lecture Notes in Computer Science(), vol 12428. Springer, Cham. https://doi.org/10.1007/978-3-030-59990-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59990-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59989-8

  • Online ISBN: 978-3-030-59990-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics