Skip to main content

Automatic Optic Nerve Sheath Measurement in Point-of-Care Ultrasound

  • Conference paper
  • First Online:
Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis (ASMUS 2020, PIPPI 2020)

Abstract

Intracranial hypertension associated with traumatic brain injury is a life-threatening condition which requires immediate diagnosis and treatment. The measurement of optic nerve sheath diameter (ONSD), using ultrasonography, has been shown to be a promising, non-invasive predictor of intracranial pressure (ICP). Unfortunately, the reproducibility and accuracy of this measure depends on the expertise of the sonologist- a requirement that limits the broad application of ONSD. Previous work on ONSD measurement has focused on computer-automated annotation of expert-acquired ultrasound taken in a clinical setting. Here, we present a system using a handheld point-of-care ultrasound probe whereby the ONSD is automatically measured without requiring an expert sonographer to acquire the images. We report our results on videos from ocular phantoms with varying ONSDs. We show that our approach accurately measures the ONSD despite the lack of an observer keeping the ONSD in focus or in frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Changa, A.R., Czeisler, B.M., Lord, A.S.: Management of elevated intracranial pressure: a review. Curr. Neurol. Neurosci. Rep. 19(12), 1–10 (2019). https://doi.org/10.1007/s11910-019-1010-3

    Article  Google Scholar 

  2. Tavakoli, S., Peitz, G., Ares, W., Hafeez, S., Grandhi, R.: Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg. Focus 43(5), 1–9 (2017). https://doi.org/10.3171/2017.8.FOCUS17450

    Article  Google Scholar 

  3. Robba, C., Cardim, D., Tajsic, T., Pietersen, J., Bulman, M., Donnelly, J., Lavinio, A., et al.: Ultrasound non-invasive measurement of intracranial pressure in neurointensive care: a prospective observational study. PLoS Med. 14(7) (2017). https://doi.org/10.1371/journal.pmed.1002356

  4. Koskinen, L.-O.D., Malm, J., Zakelis, R., Bartusis, L., Ragauskas, A., Eklund, A.: Can intracranial pressure be measured non-invasively bedside using a two-depth Doppler-technique? J. Clin. Monit. Comput. 31(2), 459–467 (2016). https://doi.org/10.1007/s10877-016-9862-4

    Article  Google Scholar 

  5. Dubourg, J., Javouhey, E., Geeraerts, T., Messerer, M., Kassai, B.: Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 37(7), 1059–1068 (2011). https://doi.org/10.1007/s00134-011-2224-2

    Article  Google Scholar 

  6. Jeon, J.P., et al.: Correlation of optic nerve sheath diameter with directly measured intracranial pressure in korean adults using bedside ultrasonography. PLoS ONE 12(9), 1–11 (2017). https://doi.org/10.1371/journal.pone.0183170

    Article  Google Scholar 

  7. Rajajee, V., Williamson, C.A., Fontana, R.J., Courey, A.J, Patil, P.G.: Noninvasive intracranial pressure assessment in acute liver failure (published correction appears in Neurocrit Care. 29(3), 530 (2018)). Neurocrit Care 29(2), 280–290 (2018). https://doi.org/10.1007/s12028-018-0540-x

  8. Meiburger, K.M., et al.: Automatic optic nerve measurement: a new tool to standardize optic nerve assessment in ultrasound b-mode images. Ultrasound Med. Biol. 46(6), 1533–1544 (2020). https://doi.org/10.1016/j.ultrasmedbio.2020.01.034

    Article  Google Scholar 

  9. Soroushmehr, R., et al.: Automated optic nerve sheath diameter measurement using super-pixel analysis. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 2793–2796 (2019). https://doi.org/10.1109/embc.2019.8856449

  10. Gerber, S., et al.: Automatic estimation of the optic nerve sheath diameter from ultrasound images. In: Cardoso, M.J., et al. (eds.) BIVPCS/POCUS -2017. LNCS, vol. 10549, pp. 113–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67552-7_14

    Chapter  Google Scholar 

  11. Halir, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: 6th International Conference in Central Europe on Computer Graphics and Visualization WSCG 98, pp. 125–132 (1998)

    Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  13. Beare, R., Lehmann, G.: The watershed transform in ITK - discussion and new developments. Insight J. 6, 1–24 (2006)

    Google Scholar 

  14. Johnson, H.J., McCormick, M., Ibáñez, L., Consortium, T.I.S.: The ITK Software Guide, 4th edn. Kitware, Inc., New York (2018)

    Google Scholar 

  15. Oliphant, T.E.: A Guide to NumPy. Trelgol Publishing, USA (2006)

    Google Scholar 

  16. Van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011). https://doi.org/10.1109/MCSE.2011.37

    Article  Google Scholar 

  17. Van der Walt, S., et al.: Scikit-image: Image processing in Python. PeerJ 2, e453 (2014). https://doi.org/10.7717/peerj.453. (the scikit-image contributors)

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. 12, 2825–2830 (2011). https://doi.org/10.5555/1953048.2078195

    Article  MathSciNet  MATH  Google Scholar 

  19. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986). https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  20. Zeiler, F.A., et al.: A unique model for ONSD Part II: Inter/Intra-operator variability. Can. J. Neurol. Sci. 41(4), 430–435 (2014). https://doi.org/10.1017/S0317167100018448

    Article  Google Scholar 

  21. Bekerman, I., Gottlieb, P., Vaiman, M.: Variations in eyeball diameters of the healthy adults. J. Ophthalmol. (2014). https://doi.org/10.1155/2014/503645

    Article  Google Scholar 

  22. Moretti, R., Pizzi, B., Cassini, F., Vivaldi, N.: Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit. Care 11, 406–410 (2009)

    Article  Google Scholar 

  23. Du, J., Deng, Y., Li, H., Qiao, S., Yu, M., Xu, Q., et al.: Ratio of optic nerve sheath diameter to eyeball transverse diameter by ultrasound can predict intracranial hypertension in traumatic brain injury patients: A prospective study. Neurocrit. Care 32(2), 478–485 (2020). https://doi.org/10.1007/s12028-019-00762-z

  24. Murphy, D.L., Oberfoell, S.H., Trent, S.A., French, A.J., Kim, D.J., Richards, D.B.: Validation of a low-cost optic nerve sheath ultrasound phantom: An educational tool. J. Med. Ultrasound (2017). https://doi.org/10.1016/j.jmu.2017.01.003

    Article  Google Scholar 

  25. Ohle, R., McIsaac, S.M., Woo, M.Y., Perry, J.J.: Sonography of the optic nerve sheath diameter for detection of raised intracranial pressure compared to compute tomography: a systematic review and meta-analysis. J. Ultrasound Med. 24, 1285–1294 (2015). https://doi.org/10.7863/ultra.34.7.1285

    Article  Google Scholar 

  26. Moore, B.T., Montgomery, S.P., Niethammer, M., Greer, H., Aylward, S.R.: Source code, data, and 3D model (2020). https://github.com/KitwareMedicalPublications/2020-MICCAI-ASMUS-Automatic-ONSD

Download references

Acknowledgements

This effort was sponsored by the Government under Other Transactions Number W81XWH-15-9-0001/W81XWH-19-9-0015 (MTEC 19-08-MuLTI-0079). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad T. Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moore, B.T., Montgomery, S.P., Niethammer, M., Greer, H., Aylward, S.R. (2020). Automatic Optic Nerve Sheath Measurement in Point-of-Care Ultrasound. In: Hu, Y., et al. Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis. ASMUS PIPPI 2020 2020. Lecture Notes in Computer Science(), vol 12437. Springer, Cham. https://doi.org/10.1007/978-3-030-60334-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60334-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60333-5

  • Online ISBN: 978-3-030-60334-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics