Skip to main content

Convex Graph Laplacian Multi-Task Learning SVM

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

Abstract

Multi-Task Learning (MTL) goal is to achieve a better generalization by using data from different sources. MTL Support Vector Machines (SVMs) embrace this idea in two main ways: by using a combination of common and task-specific parts, or by fitting individual models adding a graph Laplacian regularization that defines different degrees of task relationships. The first approach is too rigid since it imposes the same relationship among all tasks. The second one does not have a clear way of sharing information among the different tasks. In this paper, we propose a model that combines both approaches. It uses a convex combination of a common model and of task specific models, where the relationships between these specific models are determined through a graph Laplacian regularization. We write the primal problem of this formulation and derive its dual problem, which is shown to be equivalent to a standard SVM dual using a particular kernel choice. Empirical results over different regression and classification problems support the usefulness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  2. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  3. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, pp. 41–48 (2007)

    Google Scholar 

  5. Argyriou, A., Pontil, M., Ying, Y., Micchelli, C.A.: A spectral regularization framework for multi-task structure learning. In: Advances in Neural Information Processing Systems, pp. 25–32 (2008)

    Google Scholar 

  6. Jacob, L., Vert, J.-P., Bach, F.R.: Clustered multi-task learning: a convex formulation. In: Advances in Neural Information Processing Systems, pp. 745–752 (2009)

    Google Scholar 

  7. Cai, F., Cherkassky, V.: SVM+ regression and multi-task learning. In: Proceedings of the 2009 International Joint Conference on Neural Networks, IJCNN 2009, pp. 503–509. IEEE Press, Piscataway (2009)

    Google Scholar 

  8. Cai, F., Cherkassky, V.: Generalized SMO algorithm for SVM-based multitask learning. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 997–1003 (2012)

    Article  Google Scholar 

  9. Zhang, Y., Yeung, D.-Y.: A convex formulation for learning task relationships in multi-task learning. arXiv preprint arXiv:1203.3536 (2012)

  10. Lin, C.-J.: On the convergence of the decomposition method for support vector machines. IEEE Trans. Neural Networks 12(6), 1288–1298 (2001)

    Article  Google Scholar 

  11. Ruiz, C., Alaíz, C.M., Dorronsoro, J.R.: A convex formulation of SVM-based multi-task learning. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 404–415. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_35

    Chapter  Google Scholar 

Download references

Acknowledgments

With partial support from Spain’s grants TIN2016-76406-P and PID2019-106827GB-I00/AEI/10.13039/501100011033. Work supported also by the UAM–ADIC Chair for Data Science and Machine Learning. We thank Red Eléctrica de España for making available solar energy data and AEMET and ECMWF for access to the MARS repository. We also gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz, C., Alaíz, C.M., Dorronsoro, J.R. (2020). Convex Graph Laplacian Multi-Task Learning SVM. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics