Skip to main content

Prototype-Based Online Learning on Homogeneously Labeled Streaming Data

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

  • 2109 Accesses

Abstract

Algorithms in machine learning commonly require training data to be independent and identically distributed. This assumption is not always valid, e. g. in online learning, when data becomes available in homogeneously labeled blocks, which can severely impede especially instance-based learning algorithms. In this work, we analyze and visualize this issue, and we propose and evaluate strategies for Learning Vector Quantization to compensate for homogeneously labeled blocks. We achieve considerably improved results in this difficult setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This strategy is similar to Experience Replay [1] used in Reinforcement Learning.

References

  1. Adam, S., Busoniu, L., Babuska, R.: Experience replay for real-time reinforcement learning control Part C (Appl. Rev.). IEEE Trans. Syst. Man. Cybern. 42(2), 201–212 (2011)

    Article  Google Scholar 

  2. Göpfert, J.P., Hammer, B., Wersing, H.: Mitigating concept drift via rejection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 456–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_45

    Chapter  Google Scholar 

  3. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting sample selection bias by unlabeled data. In: NIPS (2006)

    Google Scholar 

  4. Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory architecture for online learning of objects. Neural Netw. 21(1), 65–77 (2008)

    Article  Google Scholar 

  5. Kohonen, T.: Learning Vector quantization. In: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30, pp. 175–189. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0_6

  6. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  7. Limberg, C.: CUPSNBOTTLES (2020). https://doi.org/10.21227/ywwz-cb26

  8. Limberg, C., Krieger, K., Wersing, H., Ritter, H.: Active learning for image recognition using a visualization-based user interface. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11728, pp. 495–506. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30484-3_40

    Chapter  Google Scholar 

  9. Limberg, C., Wersing, H., Ritter, H.: Improving active learning by avoiding ambiguous samples. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 518–527. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_51

    Chapter  Google Scholar 

  10. Limberg, C., Wersing, H., Ritter, H.J.: Efficient accuracy estimation for instance-based incremental active learning. In: European Symposium on Artificial Neural Networks (ESANN), pp. 171–176, April 2018

    Google Scholar 

  11. Losing, V., Hammer, B., Wersing, H.: Interactive online learning for obstacle classification on a mobile robot. In: International Joint Conference on Neural Networks (IJCNN) pp. 1–8 (2015)

    Google Scholar 

  12. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

    Article  Google Scholar 

  13. Sato, A., Yamada, K.: Generalized learning vector quantization. In: proceedings NIPS, pp. 423–429, (1995)

    Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv: 1409.1556

  15. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  16. Zhang, J., Wu, X., Sheng, V.S.: Learning from crowdsourced labeled data: a survey. Artif. Intell. Rev. 46(4), 543–576 (2016). https://doi.org/10.1007/s10462-016-9491-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Limberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limberg, C., Göpfert, J.P., Wersing, H., Ritter, H. (2020). Prototype-Based Online Learning on Homogeneously Labeled Streaming Data. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics