Skip to main content

Authorship Attribution With Few Training Samples

  • Chapter
  • First Online:
Machine Learning for Authorship Attribution and Cyber Forensics

Abstract

This chapter discusses authorship attribution through a training sample. The focus on authorship attribution discussed in this chapter differs in two ways from the traditional authorship identification problem discussed in the earlier chapters of this book. Firstly, the traditional authorship attribution studies [63, 65] only work in the presence of large training samples from each candidate author, which are typically enough to build a classification model. With authorship attribution, the emphasis is on using a few training samples for each suspect. In some scenarios, no training samples may exist, and the suspects may be asked (usually through court orders) to produce a writing sample for investigation purposes. Secondly, in traditional authorship studies, the goal is to attribute a single anonymous document to its true author. In this chapter, we look at cases where we have more than one anonymous message that needs to be attributed to the true author(s). It is likely that the perpetrator may either create a ghost e-mail account or hack an existing account, and then use it for sending illegitimate messages in order to remain anonymous. To address the aforementioned shortfalls, the authorship attribution problem has been redefined as follows: given a collection of anonymous messages potentially written by a set of suspects {S1, ···, Sn}, a cybercrime investigator first wants to identify the major groups of messages based on stylometric features; intuitively, each message group is written by one suspect. Then s/he wants to identify the author of each anonymous message collection from the given candidate suspects. To address the newly defined authorship attribution problem, the stylometric pattern-based approach of AuthorMinerl (described previously in Sect. 5.4.1) is extended and called AuthorMinerSmall. When applying this approach, the stylometric features are first extracted from the given anonymous message collection Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Zheng, J. Li, H. Chen, Z. Huang, A framework for authorship identification of online messages: writing-style features and classification techniques. J. Am. Soc. Inf. Sci. Technol. 57(3), 378–393 (2006)

    Article  Google Scholar 

  2. O. De Vel, A. Anderson, M. Corney, G. Mohay, Mining e-mail content for author identification forensics. ACM SIGMOD Rec. 30(4), 55–64 (2001)

    Article  Google Scholar 

  3. B.C.M. Fung, K. Wang, M. Ester, Hierarchical document clustering using frequent itemsets, in Proceedings of the 2003 SIAM International Conference on Data Mining (2003), pp. 59–70

    Google Scholar 

  4. A. Kulkarni, T. Pedersen, Name discrimination and email clustering using unsupervised clustering and labeling of similar contexts, in IICAI (2005), pp. 703–722

    Google Scholar 

  5. Enron Email Dataset. [Online]. https://www.cs.cmu.edu/~enron/. Accessed 5 May 2020

  6. F. Iqbal, H. Binsalleeh, B.C.M. Fung, M. Debbabi, Mining writeprints from anonymous e-mails for forensic investigation. Digit. Investig. 7(1–2), 56–64 (2010)

    Article  Google Scholar 

  7. H. Li, D. Shen, B. Zhang, Z. Chen, Q. Yang, Adding semantics to email clustering, in Sixth International Conference on Data Mining, 2006. ICDM’06 (2006), pp. 938–942

    Google Scholar 

  8. J.A. Hartigan, M.A. Wong, Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  9. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Scam Victim Stories, Scammer’s Exposed (2017). [Online]. https://scammer419.wordpress.com/scam-victim-stories/

  11. R. Agrawal, T. Imieliński, A. Swami, Mining association rules between sets of items in large databases. ACM SIGMOD Rec 22(2), 207–216 (1993)

    Article  Google Scholar 

  12. F. Iqbal, R. Hadjidj, B.C.M. Fung, M. Debbabi, A novel approach of mining write-prints for authorship attribution in e-mail forensics. Digit. Investig. 5, S42–S51 (2008)

    Article  Google Scholar 

  13. B. Larsen, C. Aone, Fast and effective text mining using linear-time document clustering, in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (1999), pp. 16–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, F., Debbabi, M., Fung, B.C.M. (2020). Authorship Attribution With Few Training Samples. In: Machine Learning for Authorship Attribution and Cyber Forensics. International Series on Computer Entertainment and Media Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-61675-5_6

Download citation

Publish with us

Policies and ethics