Skip to main content

Future Scenarios of Water Security: A Case of Bogotá River Basin, Colombia

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1277))

Included in the following conference series:

Abstract

Bogotá is the largest city in Colombia, it is the capital district and 20% of the Colombian population live there. Public reports have suggested that the vulnerability of water supply system in this city is high, mainly because of inadequate water resource management, climate variability, and population growth. This paper proposes a computational model to assess the long-term effects of delays in water plants and droughts on the water security of the Bogotá river basin, Colombia. The computational model is based on systemic approach, in particular, water planning on the supply side is studied in detail. The main conclusion that can be drawn is that under a Business as Usual (BAU) scenario, the study area will experiment a risk of water security. To avoid a risky situation for water security, the construction time of water plants should be lower than 9 years. The contribution of this work is to raise the awareness of policy makers about the risk of shortage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pares-Ramos, I.K., Alvarez-Berrios, N., Aide, T.M.: Contrasting patterns of urban expansion in Colombia, Ecuador, Peru, and Bolivia between 1992 and 2009. AMBIO 42, 29–40 (2013)

    Google Scholar 

  2. Ricardo, L.: El papel del agua en una ciudad como Bogota. Revista Ciudades Estados y Politica 1, 51–60 (2013)

    Google Scholar 

  3. Aldana, A.C., Osorio, S.C.: El urbanismo y la planeación moderna. Glocalidades en la formación de la modernidad urbana de Medellín. Historia y sociedad 26, 17–51 (2013)

    Google Scholar 

  4. Aldana, A.C., Osorio, S.C.: Landscape and urban planning informal urban development in Latin American urban peripheries. Spatial assessment in Bogotá, Lima and Santiago de Chile. Landsc. Urban Plan. 165, 267–279 (2017)

    Google Scholar 

  5. Andrade, G.I., Castro, L.G.: Degradación, pérdida y transformación de la biodiversidad continental en Colombia Invitación a una interpretación socioecológica. Ambiente y Desarrollo 165, 54–74 (2012)

    Google Scholar 

  6. Cardenas-Agudelo, M.: La gestión de ecosistemas estratégicos proveedores de agua. Gestión y desarrollo 1, 109–121 (2013)

    Google Scholar 

  7. Molina-prieto, C.A., Victoria-morales, M.I.: Diversidad social y reasentamiento de población, un reto más en la recuperación del río Bogotá. Revista Nodo 7, 23–42 (2012)

    Google Scholar 

  8. Buytaert, W., Bievre, B.De: Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour. 48, 1–13 (2012). https://doi.org/10.1029/2011WR011755

    Article  Google Scholar 

  9. Chen, Zhihe, Wei, Shuai: Application of system dynamics to water security research. Water Resour. Manag. 28(2), 287–300 (2013). https://doi.org/10.1007/s11269-013-0496-8

    Article  Google Scholar 

  10. Zeitoun, M., et al.: Reductionist and integrative research approaches to complex water security policy challenges. Glob. Environ. Chang. 39, 143–154 (2016). https://doi.org/10.1016/j.gloenvcha.2016.04.010

    Article  Google Scholar 

  11. Proskuryakova, L.N., Saritas, O., Sivaev, S.: Global water trends and future scenarios for sustainable development: the case of Russia. J. Clean. Prod. 170, 867–879 (2018). https://doi.org/10.1016/j.jclepro.2017.09.120

    Article  Google Scholar 

  12. Lu, Y., Xu, H., Wang, Y., Yang, Y.: Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: a case in Huai’an City. Water Resour. Ind. 18, 71–77 (2017). https://doi.org/10.1016/j.jclepro.2017.09.120

    Article  Google Scholar 

  13. Wang, Y., Zhou, X., Engel, B.: Water environment carrying capacity in Bosten Lake basin. J. Clean. Prod. 199, 574–583 (2018). https://doi.org/10.1016/j.jclepro.2018.07.202

    Article  Google Scholar 

  14. Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A., Cardoso, A.C.: Assessing water ecosystem services for water resource management. Environ. Sci. Policy 61, 194–203 (2016). https://doi.org/10.1016/j.envsci.2016.04.008

    Article  Google Scholar 

  15. Henriques, C., Garnett, K., Weatherhead, E.K., Lickorish, F.A., Forrow, D., Delgado, J.: The future water environment–using scenarios to explore the significant water management challenges in England and Wales to 2050. Sci. Total Environ. 512, 381–396 (2015). https://doi.org/10.1016/j.jclepro.2018.07.202

    Article  Google Scholar 

  16. Liu, R.Z., Borthwick, A.G.: Measurement and assessment of carrying capacity of the environment in Ningbo, China. J. Environ. Manag. 92, 2047–2053 (2011). https://doi.org/10.1016/j.jenvman.2011.03.033

    Article  Google Scholar 

  17. Wei, S., Yang, H., Song, J., Abbaspour, K.C., Xu, Z.: System dynamics simulation model for assessing socio-economic impacts of different levels of environmental flow allocation in the Weihe River Basin, China. Eur. J. Oper. Res. 221, 248–262 (2012). https://doi.org/10.1016/j.ejor.2012.03.014

    Article  MATH  Google Scholar 

  18. Zhou, X.Y., et al.: Space-time approach to water environment carrying capacity calculation. J. Clean. Prod. 149, 302–312 (2017). https://doi.org/10.1016/j.jclepro.2017.02.110

    Article  Google Scholar 

  19. Hanjra, M.A., Qureshi, M.E.: Global water crisis and future food security in an era of climate change. Food Policy 35, 365–377 (2010). https://doi.org/10.1016/j.foodpol.2010.05.006

    Article  Google Scholar 

  20. Wang, T., Xu, S.: Dynamic successive assessment method of water environment carrying capacity and its application. Ecol. Indic. 52, 134–146 (2015). https://doi.org/10.1016/j.ecolind.2014.12.002

    Article  Google Scholar 

  21. Wang, Y.J., Qin, D.H.: Influence of climate change and human activity on water resources in arid region of Northwest China: an overview. Adv. Clim. Chang. Res. 8, 268–278 (2017). https://doi.org/10.1016/j.accre.2017.08.004

    Article  Google Scholar 

  22. Zhang, S., et al.: Technology research progress, problems and prospects of mine water treatment technology and resource utilization in China water treatment technology and resource utilization. Crit. Rev. Environ. Sci. Technol. 50, 331–383 (2020). https://doi.org/10.1080/10643389.2019.1629798

    Article  Google Scholar 

  23. Yang, J., Lei, K., Khu, S., Meng, W.: Assessment of water resources carrying capacity for sustainable development based on a system dynamics model: a case study of Tieling City, China. Water Resour. Manag. 29, 885–899 (2020). https://doi.org/10.1016/j.jenvman.2018.09.085

    Article  Google Scholar 

  24. Li, Z., Li, C., Wang, X., Peng, C., Cai, Y., Huang, W.: A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China. J. Hydrol. 556, 50–60 (2018). https://doi.org/10.1016/j.jhydrol.2017.11.007

    Article  Google Scholar 

  25. Yang, Z., Song, J., Cheng, D., Xia, J., Li, Q., Ahamad, M.I.: Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J. Environ. Manag. 230, 221–233 (2019). https://doi.org/10.1016/j.jenvman.2018.09.085

    Article  Google Scholar 

  26. Mirchi, A., Madani Jr., K., Watkins, D., Ahmad, S.: Synthesis of system dynamics tools for holistic conceptualization of water resources problems. Water Resour. Manag. 26(9), 2421–2442 (2012). https://doi.org/10.1007/s11269-012-0024-2

    Article  Google Scholar 

  27. Tidwell, V.C., Passell, H.D., Conrad, S.H., Thomas, R.P.: System dynamics modeling for community-based water planning: application to the Middle Rio Grande. Aquat. Sci. 66(4), 357–372 (2004). https://doi.org/10.1007/s00027-004-0722-9

    Article  Google Scholar 

  28. Stave, K.A.: A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada. J. Environ. Manag. 67(4), 303–313 (2003). https://doi.org/10.1016/S0301-4797(02)00205-0

    Article  Google Scholar 

  29. Qi, C., Chang, N.B.: System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts. J. Environ. Manag. 92(6), 1628–1641 (2011). https://doi.org/10.1016/j.jenvman.2011.01.020

    Article  Google Scholar 

  30. Niazi, A., Prasher, S.O., Adamowski, J., Gleeson, T.: A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam. Water 6(8), 2300–2321 (2014). https://doi.org/10.3390/w6082300

    Article  Google Scholar 

  31. Hossein, M., Zarghami, M.: Should water supply for megacities depend on outside resources? A Monte-Carlo system dynamics simulation for Shiraz, Iran. Sustain. Cities Soc. 44, 163–170 (2019). https://doi.org/10.3390/w6082300

    Article  Google Scholar 

  32. Gil, E., Tobon, C.: Hydrological modelling with TOPMODEL of Chingaza páramo, Colombia. Rev. Fac. Nac. Agron. 69, 7919–7933 (2016). https://doi.org/10.15446/rfna.v69n2.59137

    Article  Google Scholar 

  33. Moncada, A., Escobar, M., Betancourth, A., Vélez-Upegui, J., Zambrano, J., Alzate, L.: Modelling water stress vulnerability in small Andean basins: case study of Campoalegre River basin, Colombia. Int. J. Water Resour. Dev. 1–18 (2016). https://doi.org/10.1080/07900627.2019.1699780

  34. Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) CONFERENCE 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016). https://doi.org/10.10007/1234567890

  35. Cities and Climate Change. PSCRS. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40727-8_5

  36. INSTITUTO DE INVESTIGACIÓN DE RECURSOS BIOLÓGICOS ALEXANDER VON HUMBOLDT: urbano-rural de la localidad de Suba, 2nd edn. Instituo Von Humboldt, Bogota (2016)

    Google Scholar 

  37. Author, A.-B.: Contribution title. In: 9th International Proceedings on Proceedings, pp. 1–2. Publisher, Location (2010)

    Google Scholar 

  38. DANE Departamento Administrativo Nacional de Estadisticas. https://www.dane.gov.co/. Accessed 4 May 2020

  39. Acueducto de Bogota. https://www.acueducto.com.co/. Accessed 4 Jan 2020

  40. IDEAM. http://institucional.ideam.gov.co/jsp/812. Accessed 1 Feb 2020

  41. Huitaca CAR. https://www.car.gov.co/uploads/files/5b9a94fe1389d.pdf. Accessed 1 Mar 2019

  42. Acueducto de Bogota. https://www.acueducto.com.co/. Accessed 1 Mar 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Zapata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chavarro, A., Castaneda, M., Zapata, S., Dyner, I. (2020). Future Scenarios of Water Security: A Case of Bogotá River Basin, Colombia. In: Florez, H., Misra, S. (eds) Applied Informatics. ICAI 2020. Communications in Computer and Information Science, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-61702-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61702-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61701-1

  • Online ISBN: 978-3-030-61702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics