Skip to main content

Machine Learning Algorithms for Improved Thermospheric Density Modeling

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Included in the following conference series:

Abstract

Accurate estimation and prediction of the thermospheric density is crucial for accurate low Earth orbit prediction. Recently, Reduced-Order Models (ROMs) were developed to obtain accurate quasi-physical dynamic models for the thermospheric density. In this paper we explore the use of deep neural networks and autoencoders to improve the reduced-order models. Through the development of deep and convolutional autoencoders, we obtain improved low-dimension representations of a high-dimensional density state. In addition, we improve the prediction accuracy of the ROM using a deep neural network.

H. Turner and M. Zhang—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on Machine Learning, vol. 28, p. I-115-I-123. JMLR (2013)

    Google Scholar 

  2. Bernstein, D., Ridley, A., Cutler, J., Cohn, A.: Transformative advances in DDDAS with application to space weather monitoring. University of Michigan (2015)

    Google Scholar 

  3. Blasch, E.: DDDAS advantages from high-dimensional simulation. In: 2018 Winter Simulation Conference (WSC), pp. 1418–1429. IEEE (2018)

    Google Scholar 

  4. Gondelach, D.J., Linares, R.: Real-time thermospheric density estimation viatwo-line element data assimilation. Space Weather 18(2), e2019SW002356 (2020)

    Article  Google Scholar 

  5. Gonzalez, F.J., Balajewicz, M.: Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems (2018). arXiv preprint arXiv:1808.01346

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  7. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  9. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020)

    Article  MathSciNet  Google Scholar 

  10. Licata, R.J., Mehta, P.M.: Physics-informed machine learning with autoencoders and LSTM for probabilistic space weather modeling and forecasting. In: 100th American Meteorological Society Annual Meeting (2020)

    Google Scholar 

  11. Linares, R., Mehta, P.M., Godinez, H.C., Gondelach, D.J.: Koopman operator theory for thermospheric density modeling. In: Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, HI (2019)

    Google Scholar 

  12. Mehta, P.M., Linares, R.: A methodology for reduced order modeling and calibration of the upper atmosphere. Space Weather 15(10), 1270–1287 (2017)

    Article  Google Scholar 

  13. Mehta, P.M., Linares, R., Sutton, E.K.: A quasi-physical dynamic reduced order model for thermospheric mass density via hermitian space-dynamic mode decomposition. Space Weather 16(5), 569–588 (2018)

    Article  Google Scholar 

  14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Szegedy, C., et al.: Going deeper with convolutions (2014). arXiv preprint arXiv:1409.4842

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Herbert Turner , Maggie Zhang , David Gondelach or Richard Linares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Turner, H., Zhang, M., Gondelach, D., Linares, R. (2020). Machine Learning Algorithms for Improved Thermospheric Density Modeling. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics