Skip to main content

Occlusion Detection for Dynamic Adaptation

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Included in the following conference series:

Abstract

Occlusion is a common issue for object detection and tracking applications using a remote sensor platform, especially in complex urban environments where occlusions from buildings, bridges, and trees are frequent events. While occlusions are unavoidable, the events can be predicted to occur before the object of interest is obscured if there is prior knowledge of the observed environment. To aid in object detection and tracking tasks, we create an environment to map terrain and find obscured regions in the scene which helps with re-detecting objects once they are no longer obscured. We propose a dynamic data driven applications systems (DDDAS) framework for detecting occluded regions in an imaged scene by integrating streams of real data with a physics-based simulation model that updates based on the most recent images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., Bosch, J.: MODTRAN®6: A major upgrade of the MODTRAN®radiative transfer code, pp. 1–4, March 2014. https://doi.org/10.1109/WHISPERS.2014.8077573

  2. Goodenough, A.A., Brown, S.D.: Dirsig 5: core design and implementation. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. vol. 8390, p. 83900H. International Society for Optics and Photonics (2012)

    Google Scholar 

  3. Goodenough, A.A., Brown, S.D.: Dirsig5: next-generation remote sensing data and image simulation framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(11), 4818–4833 (2017)

    Article  Google Scholar 

  4. Han, S., et al.: Efficient generation of image chips for training deep learning algorithms. In: Automatic Target Recognition XXVII. vol. 10202, p. 1020203. International Society for Optics and Photonics (2017)

    Google Scholar 

  5. Hang, R., Li, Z., Liu, Q., Ghamisi, P., Bhattacharyya, S.S.: Hyperspectral image classification with attention aided CNNs (2020)

    Google Scholar 

  6. Kemker, R., Salvaggio, C., Kanan, C.: Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J. Photogram. Remote Sens. 145, 60–77 (2018)

    Article  Google Scholar 

  7. Moorhead, I.R., et al.: CAMEO-SIM: a physics-based broadband scene simulation tool for assessment of camouflage, concealment, and deception methodologies. Opt. Eng. 40, 1896–1905 (2001)

    Article  Google Scholar 

  8. Mulhollan, Z., Rangnekar, A., Bauch, T., Hoffman, M.J., Vodacek, A.: Calibrated vehicle paint signatures for simulating hyperspectral imagery and Video Processing (2020). arXiv: Image

  9. OpenStreetMap contributors: Planet dump retrieved from (2017) https://planet.osm.org. https://www.openstreetmap.org

  10. Palaniappan, K., et al.: Moving object detection for vehicle tracking in wide area motion imagery using 4d filtering. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2830–2835 (2016)

    Google Scholar 

  11. Rangnekar, A., Mokashi, N., Ientilucci, E., Kanan, C., Hoffman, M.J.: Aerorit: a new scene for hyperspectral image analysis (2019). arXiv preprint arXiv:1912.08178

  12. Richtsmeier, S.C., Berk, A., Bernstein, L.S., Adler-Golden, S.M.: A 3-dimensional radiative-transfer hyperspectral image simulator for algorithm validation (2001)

    Google Scholar 

  13. Schott, J.R., Brown, S.D., Raqueno, R.V., Gross, H.N., Robinson, G.: An advanced synthetic image generation model and its application to multi/hyperspectral algorithm development. Can. J. Remote Sens. 25(2), 99–111 (1999)

    Article  Google Scholar 

  14. Uzkent, B., Rangnekar, A., Hoffman, M.J.: Tracking in aerial hyperspectral videos using deep kernelized correlation filters. IEEE Trans. Geosci. Remote Sens. 57(1), 449–461 (2018)

    Article  Google Scholar 

  15. Zahidi, U.A., Yuen, P.W., Piper, J., Godfree, P.S.: An end-to-end hyperspectral scene simulator with alternate adjacency effect models and its comparison with CameoSim. Remote Sens. 12(1), 74 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Mulhollan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mulhollan, Z., Rangnekar, A., Vodacek, A., Hoffman, M.J. (2020). Occlusion Detection for Dynamic Adaptation. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics