Skip to main content

Discretization of the Koch Snowflake Domain with Boundary and Interior Energies

  • Conference paper
  • First Online:
Fractals in Engineering: Theoretical Aspects and Numerical Approximations

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 8))

Abstract

We study the discretization of a Dirichlet form on the Koch snowflake domain and its boundary with the property that both the interior and the boundary can support positive energy. We compute eigenvalues and eigenfunctions, and demonstrate the localization of high energy eigenfunctions on the boundary via a modification of an argument of Filoche and Mayboroda. Hölder continuity and uniform approximation of eigenfunctions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achdou, Y., Sabot, C., Tchou, N.: Diffusion and propagation problems in some ramified domains with a fractal boundary. M2AN Math. Model. Numer. Anal. 40(4), 623–652 (2006)

    Google Scholar 

  2. Achdou, Y., Sabot, C., Tchou, N.: Transparent boundary conditions for the Helmholtz equation in some ramified domains with a fractal boundary. J. Comput. Phys. 220(2), 712–739 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agliari, E., Blumen, A., Muelken, O.: Quantum-walk approach to searching on fractal structures. Phys. Rev. A 82(1), 012305 (2010)

    Article  Google Scholar 

  4. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  Google Scholar 

  5. Akkermans, E.: Statistical mechanics and quantum fields on fractals. Fractal Geom. Dyn. Syst. Pure Appl. Math. II Fract. Appl. Math. 601, 1–22 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Akkermans, E., Mallick, K.: Vortices in Ginzburg-Landau billiards. J. Phys. A Math. Gen. 32(41), 7133 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akkermans, E., Dunne, G.V., Teplyaev, A.: Thermodynamics of photons on fractals. Phys. Rev. Lett. 105(23), 230407 (2010)

    Article  Google Scholar 

  8. Aougab, T., Dong, S.C., Strichartz, R.S.: Laplacians on a family of quadratic Julia sets II. Commun. Pure Appl. Anal. 12(1), 1–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Apushkinskaya, D.E., Nazarov, A.I.: A survey of results on nonlinear Venttsel problems. Appl. Math. 45(1), 69–80 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arnold, D.N., David, G., Filoche, M., Jerison, D., Mayboroda, S.: Localization of eigenfunctions via an effective potential. Commun. Partial Differ. Equ. 44(11), 1186–1216 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Attal, S., Petruccione, F., Sabot, C., Sinayskiy, I.: Open quantum random walks. J. Stat. Phys. 147(4), 832–852 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Baelus, B.J., Cabral, L.R.E., Peeters, F.M.: Vortex shells in mesoscopic superconducting disks. Phys. Rev. B 69(6), 064506 (2004)

    Article  Google Scholar 

  13. Brzoska, A., Coffey, A., Hansalik, M., Loew, S., Rogers, L.G.: Spectra of magnetic operators on the diamond lattice fractal (2017, preprint). arXiv:1704.01609

    Google Scholar 

  14. Capitanelli, R., Vivaldi, M.A.: Uniform weighted estimates on pre-fractal domains. Discrete Contin. Dynam. Syst.-Ser. B 19(7), 1969–1985 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cefalo, M., Lancia, M.R.: An optimal mesh generation algorithm for domains with Koch type boundaries. Math. Comput. Simul. 106, 133–162 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Creo, S., Lancia, M.R., Vélez-Santiago, A., Vernole, P.: Approximation of a nonlinear fractal energy functional on varying Hilbert spaces. Commun. Pure Appl. Anal. 17(2), 647–669 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Creo, S., Lancia, M.R., Vernole, P., Hinz, M., Teplyaev, A.: Magnetostatic problems in fractal domains (2018, preprint ). arXiv:1805.08262

    Google Scholar 

  18. Dunne, G.V.: Heat kernels and zeta functions on fractals. J. Phys. A: Math. Theor. 45(37), 374016 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, E.J.: A finite element approach to Hölder extension using prefractals. Methods Appl. Anal. 19(2), 161–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Filoche, M., Mayboroda, S.: The hidden landscape of localization (2011). arXiv:1107.0397

    Google Scholar 

  21. Filoche, M., Mayboroda, S.: Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA 109(37), 14761–14766 (2012)

    Article  MathSciNet  Google Scholar 

  22. Fleckinger, J., Levitin, M., Vassiliev, D.: Heat equation on the triadic von Koch snowflake: asymptotic and numerical analysis. Proc. Lond. Math. Soc. 71(2), 372–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flock, T.C., Strichartz, R.S.: Laplacians on a family of quadratic Julia sets I. Trans. Am. Math. Soc. 364(8), 3915–3965 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Freiberg, U.R., Lancia, M.R.: Energy form on a closed fractal curve. Z. Anal. Anwendungen 23(1), 115–137 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Peeters, F.M., Schweigert, V.A.: Non-quantized penetration of magnetic field in the vortex state of superconductors. Nature 407(6800), 55 (2000)

    Article  Google Scholar 

  26. Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hinz, M., Rogers, L.: Magnetic fields on resistance spaces. J. Fractal Geom. 3(1), 75–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hinz, M., Teplyaev, A.: Dirac and magnetic Schrödinger operators on fractals. J. Funct. Anal. 265(11), 2830–2854 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hinz, M., Koch, D., Meinert, M.: Sobolev spaces and calculus of variations on fractals (2018, preprint). arXiv:1805.04456

    Google Scholar 

  30. Hinz, M., Lancia, M.R., Teplyaev, A., Vernole, P.: Fractal snowflake domain diffusion with boundary and interior drifts. J. Math. Anal. Appl. 457(1), 672–693 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keller, J.B., Rubinow, S.I.: Asymptotic solution of eigenvalue problems. Ann. Phys. 9(1), 24–75 (1960)

    Article  MATH  Google Scholar 

  32. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  Google Scholar 

  33. Kenig, C.E.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 83. Published for the Conference Board of the Mathematical Sciences, Washington; by the American Mathematical Society, Providence (1994)

    Google Scholar 

  34. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  35. Koskela, P., Reitich, F.: Hölder continuity of Sobolev functions and quasiconformal mappings. Math. Z. 213(3), 457–472 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lancia, M.R.: A transmission problem with a fractal interface. Z. Anal. Anwendungen 21(1), 113–133 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lancia, M.R., Vernole, P.: Venttsel’ problems in fractal domains. J. Evol. Equ. 14(3), 681–712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lancia, M.R., Vélez-Santiago, A., Vernole, P.: Quasi-linear Venttsel’ problems with nonlocal boundary conditions on fractal domains. Nonlinear Anal. Real World Appl. 35, 265–291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lancia, M.R., Vélez-Santiago, A., Vernole, P.: A quasi-linear nonlocal Venttsel’ problem of Ambrosetti-Prodi type on fractal domains. Discrete Contin. Dyn. Syst. 39(8), 4487–4518 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lapidus, M.L.: Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture. Trans. Am. Math. Soc. 325(2), 465–529 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lapidus, M.L., Niemeyer, R.G.: Towards the Koch snowflake fractal billiard: computer experiments and mathematical conjectures. In: Gems in Experimental Mathematics. Contemporary Mathematics, vol. 517, pp. 231–263. American Mathematical Society, Providence (2010)

    Google Scholar 

  42. Lapidus, M.L., Niemeyer, R.G..: The current state of fractal billiards. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. II. Fractals in Applied Mathematics. Contemporary Mathematics, vol. 601, pp. 251–288. American Mathematical Society, Providence (2013)

    Google Scholar 

  43. Lapidus, M.L., Niemeyer, R.G.: Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete Contin. Dyn. Syst. 33(8), 3719–3740 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lapidus, M.L., Pang, M.M.H.: Eigenfunctions of the Koch snowflake domain. Commun. Math. Phys. 172(2), 359–376 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lapidus, M.L., Neuberger, J.W., Renka, R.J., Griffith, C.A.: Snowflake harmonics and computer graphics: numerical computation of spectra on fractal drums. Int. J. Bifur. Chaos Appl. Sci. Eng. 6(7), 1185–1210 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123(2), 368–421 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mosco, U.: Variational fractals. Annali Della Scuola Normale Superiore Di Pisa. Classe di Scienze 25(3–4), 683–712 (1997)

    MathSciNet  MATH  Google Scholar 

  48. Näkki, R., Palka, B.: Extremal length and Hölder continuity of conformal mappings. Comment. Math. Helv. 61(3), 389–414 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nguyen, B.-T., Grebenkov, D.S.: Localization of Laplacian eigenfunctions in circular, spherical, and elliptical domains. SIAM J. Appl. Math. 73(2), 780–803 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nyström, K.: Integrability of Green potentials in fractal domains. Ark. Mat. 34(2), 335–381 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ord, G.N.: Fractal space-time: a geometric analogue of relativistic quantum mechanics. J. Phys. A Math. Gen. 16(9), 1869 (1983)

    Article  MathSciNet  Google Scholar 

  52. Rogers, L.G., Teplyaev, A.: Laplacians on the basilica Julia sets. Commun. Pure Appl. Anal. 9(1), 211–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sapoval, B.: Experimental observation of local modes in fractal drums. Phys. D Nonlinear Phenomena 38(1), 296–298 (1989)

    Article  Google Scholar 

  54. Sapoval, B., Gobron, T.: Vibrations of strongly irregular or fractal resonators. Phys. Rev. E 47, 3013–3024 (1993)

    Article  Google Scholar 

  55. Sapoval, B., Gobron, T., Margolina, A.: Vibrations of fractal drums. Phys. Rev. Lett. 67(21), 2974 (1991)

    Article  Google Scholar 

  56. Spicer, C., Strichartz, R.S., Totari, E.: Laplacians on Julia sets III: Cubic Julia sets and formal matings. In: Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics. I. Fractals in Pure Mathematics. Contemporary Mathematics, vol. 600, pp. 327–348. American Mathematical Society, Providence (2013)

    Google Scholar 

  57. Strichartz, R.S., Wiese, S.C.: Spectral properties of Laplacians on snowflake domains and filled Julia sets (2019). arXiv:1903.08259

    Google Scholar 

  58. Ventcel’, A.D.: On boundary conditions for multi-dimensional diffusion processes. Theor. Probab. Appl. 4, 164–177 (1959)

    Google Scholar 

  59. Wallin, H.: The trace to the boundary of Sobolev spaces on a snowflake. Manuscripta Math. 73(2), 117–125 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Michael Hinz, Maria Rosaria Lancia, Svitlana Mayboroda, Anna Rozanova-Pierrat, and Tatiana Toro for helpful discussions.

The authors are grateful to Kevin Marinelli for the support in implementing the numerical codes.

Research supported in part by NSF DMS Grants 1659643 and 1613025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Teplyaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabbard, M., Lima, C., Mograby, G., Rogers, L., Teplyaev, A. (2021). Discretization of the Koch Snowflake Domain with Boundary and Interior Energies. In: Lancia, M.R., Rozanova-Pierrat, A. (eds) Fractals in Engineering: Theoretical Aspects and Numerical Approximations. SEMA SIMAI Springer Series(), vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-61803-2_4

Download citation

Publish with us

Policies and ethics