Skip to main content

Online Mobility Tracking Against Evolving Maritime Trajectories

  • Chapter
  • First Online:
Guide to Maritime Informatics

Abstract

We examine techniques concerning mobility tracking over trajectories of vessels monitored over a large maritime area. We focus particularly on maintaining summarized representations of such trajectories in online fashion based on surveillance data streams of positions relayed from a fleet of numerous vessels using the Automatic Identification System. First, we review generic, state-of-the-art simplification algorithms that can offer concise summaries of each trajectory as it evolves. Instead of retaining every incoming position, such methods drop any predictable positions along trajectory segments of “normal” motion characteristics with minimal loss in accuracy. We then discuss online filters that can reduce much of the noise inherent in the reported vessel positions. Furthermore, we present a method for deriving trajectory synopses designed specifically for the maritime domain. With suitable parametrization, this technique incrementally annotates streaming positions that convey salient trajectory events (stop, change in speed or heading, slow motion, etc.) detected when the motion pattern of a given vessel changes significantly. Finally, we discuss a qualitative comparison of maritime-specific synopses along with trajectory approximations obtained from generic simplification algorithms and highlight their pros and cons in terms of approximation error and compression ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apache Flink. https://flink.apache.org/. Retrieved 30 Sept 2019

  2. Apache Spark Streaming. http://spark.apache.org/streaming/. Retrieved 30 Sept 2019

  3. Apache Storm. http://storm.apache.org/. Retrieved 30 Sept 2019

  4. Alevizos, E., Artikis, A., Patroumpas, K., Vodas, M., Theodoridis, Y., Pelekis, N.: How not to drown in a sea of information: An event recognition approach. In: IEEE Big Data, pp. 984–990 (2015)

    Google Scholar 

  5. Andrienko, N., Andrienko, G.: Visual analytics of vessel movement. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics, Chap. 5. Springer (2021)

    Google Scholar 

  6. Bereta, K., Chatzikokolakis, K., Zissis, D.: Maritime reporting systems. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics, chap. 1. Springer (2021)

    Google Scholar 

  7. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: VLDB, pp. 853–864 (2005)

    Google Scholar 

  8. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15(3), 211–228 (2006)

    Article  Google Scholar 

  9. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache Flink: Stream and batch processing in a single engine. IEEE Data Eng. Bull. 38, 28–38 (2015)

    Google Scholar 

  10. Cudré-Mauroux, P., Wu, E., Madden, S.: Trajstore: an adaptive storage system for very large trajectory data sets. In: ICDE, pp. 109–120 (2010)

    Google Scholar 

  11. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)

    Article  Google Scholar 

  12. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial data. In: ICDE, pp. 1352–1363 (2015)

    Google Scholar 

  13. Hagedorn, S., Götze, P., Sattler, K.: Big spatial data processing frameworks: feature and performance evaluation. In: EDBT, pp. 490–493 (2017)

    Google Scholar 

  14. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M., Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

    Article  Google Scholar 

  15. Katsilieris, F., Braca, P., Coraluppi, S.: Detection of malicious AIS position spoofing by exploiting radar information. In: FUSION, pp. 1196–1203 (2013)

    Google Scholar 

  16. Kazemitabar, S.J., Demiryurek, U., Ali, M.H., Akdogan, A., Shahabi, C.: Geospatial stream query processing using Microsoft SQL Server Streaminsight. Proc. VLDB Endow. 3(2), 1537–1540 (2010)

    Article  Google Scholar 

  17. Ke, B., Shao, J., Zhang, D.: An efficient online approach for direction-preserving trajectory simplification with interval bounds. In: MDM, pp. 50–55 (2017)

    Google Scholar 

  18. Kellaris, G., Pelekis, N., Theodoridis, Y.: Map-matched trajectory compression. J. Syst. Softw. 86(6), 1566–1579 (2013)

    Article  Google Scholar 

  19. Kipf, A., Pandey, V., Böttcher, J., Braun, L., Neumann, T., Kemper, A.: Analytics on fast data: Main-memory database systems versus modern streaming systems. In: EDBT, pp. 49–60 (2017)

    Google Scholar 

  20. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. Database Syst. 34(1), 4:1–4:49 (2009)

    Google Scholar 

  21. Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB J. 20(5), 671–694 (2011)

    Article  Google Scholar 

  22. Lin, X., Ma, S., Zhang, H., Wo, T., Huai, J.: One-pass error bounded trajectory simplification. Proc. VLDB Endow. 10(7), 841–852 (2017)

    Article  Google Scholar 

  23. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Jurdak, R.: Bounded quadrant system: Error-bounded trajectory compression on the go. In: ICDE, pp. 987–998 (2015)

    Google Scholar 

  24. Liu, J., Zhao, K., Sommer, P., Shang, S., Kusy, B., Lee, J., Jurdak, R.: A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans. Knowl. Data Eng. 28(11), 2827–2841 (2016)

    Article  Google Scholar 

  25. Long, C., Wong, R.C.W., Jagadish, H.V.: Direction-preserving trajectory simplification. Proc. VLDB Endow. 6(10), 949–960 (2013)

    Article  Google Scholar 

  26. Long, C., Wong, R.C.W., Jagadish, H.V.: Trajectory simplification: on minimizing the direction-based error. Proc. VLDB Endow. 8(1), 49–60 (2014)

    Article  Google Scholar 

  27. Meratnia, N., de By, R.: Spatiotemporal compression techniques for moving point objects. In: EDBT, pp. 765–782. Springer (2004)

    Google Scholar 

  28. Millefiori, L.M., Braca, P., Bryan, K., Willett, P.: Adaptive filtering of imprecisely time-stamped measurements with application to AIS networks. In: FUSION, pp. 359–365 (2015)

    Google Scholar 

  29. Muckell, J., Hwang, J., Patil, V., Lawson, C.T., Ping, F., Ravi, S.S.: SQUISH: an online approach for GPS trajectory compression. In: COM.Geo, pp. 13:1–13:8 (2011)

    Google Scholar 

  30. Muckell, J., Jr., P.W.O., Hwang, J.H., Lawson, C., Ravi, S.S.: Compression of trajectory data: a comprehensive evaluation and new approach. Geoinformatica 18(3), 435–460 (2014)

    Google Scholar 

  31. Nibali, A., He, Z.: Trajic: an effective compression system for trajectory data. IEEE Trans. Knowl. Data Eng. 27(11), 3138–3151 (2015)

    Article  Google Scholar 

  32. International Maritime Organization: Automatic Identification Systems. http://www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx. Retrieved 30 Sept 2019

  33. Ozsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: a survey. IEEE Trans. Knowl. Data Eng. 7(4), 513–532 (1995)

    Article  Google Scholar 

  34. Pallotta, G., Vespe, M., Bryan, K.: Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction. Entropy 15(6), 2218–2245 (2013)

    Article  Google Scholar 

  35. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endow. 11(11), 1661–1673 (2018)

    Article  Google Scholar 

  36. Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.: Online event recognition from moving vessel trajectories. GeoInformatica 21(2), 389–427 (2017)

    Article  Google Scholar 

  37. Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., Pelekis, N.: Event recognition for maritime surveillance. In: EDBT, pp. 629–640 (2015)

    Google Scholar 

  38. Patroumpas, K., Pelekis, N., Theodoridis, Y.: On-the-fly mobility event detection over aircraft trajectories. In: SIGSPATIAL, pp. 259–268 (2018)

    Google Scholar 

  39. Patroumpas, K., Sellis, T.: Maintaining consistent results of continuous queries under diverse window specifications. Inf. Syst. 36(1), 42–61 (2011)

    Article  Google Scholar 

  40. Pitsikalis, M., Artikis, A.: Composite maritime event recognition. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics, chap. 8. Springer (2021)

    Google Scholar 

  41. Pitsikalis, M., Artikis, A., Dréo, R., Ray, C., Camossi, E., Jousselme, A.L.: Composite event recognition for maritime monitoring. In: DEBS, pp. 163–174 (2019)

    Google Scholar 

  42. Potamias, M., Patroumpas, K., Sellis, T.: Sampling trajectory streams with spatiotemporal criteria. In: SSDBM, pp. 275–284 (2006)

    Google Scholar 

  43. Potamias, M., Patroumpas, K., Sellis, T.: Online amnesic summarization of streaming locations. In: SSTD, pp. 148–165. Springer (2007)

    Google Scholar 

  44. Ray, C., Dréo, R., Camossi, E., Jousselme, A.L., Iphar, C.: Heterogeneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data Brief 25 (2019)

    Google Scholar 

  45. Salmon, L., Ray, C.: Design principles of a stream-based framework for mobility analysis. GeoInformatica 21(2), 237–261 (2017)

    Article  Google Scholar 

  46. Santipantakis, G.M., Doulkeridis, C., Vouros, G.A.: Link discovery for maritime monitoring. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics, chap. 7. Springer (2021)

    Google Scholar 

  47. Shahir, H.Y., Glässer, U., Shahir, A.Y., Wehn, H.: Maritime situation analysis framework: Vessel interaction classification and anomaly detection. In: IEEE Big Data, pp. 1279–1289 (2015)

    Google Scholar 

  48. Song, R., Sun, W., Zheng, B., Zheng, Y.: PRESS: a novel framework of trajectory compression in road networks. Proc. VLDB Endow. 7(9), 661–672 (2014)

    Article  Google Scholar 

  49. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream processing. ACM SIGMOD Rec. 34(4), 42–47 (2005)

    Article  Google Scholar 

  50. Tampakis, P., Sideridis, S., Nikitopoulos, P., Pelekis, N., Theodoridis, Y.: Maritime data analytics. In: Artikis, A., Zissis, D. (eds.) Guide to Maritime Informatics, chap. 4. Springer (2021)

    Google Scholar 

  51. Terroso-Saenz, F., Valdés-Vela, M., den Breejen, E., Hanckmann, P., Dekker, R., Skarmeta-Gómez, A.F.: CEP-traj: an event-based solution to process trajectory data. Inf. Syst. 52, 34–54 (2015)

    Article  Google Scholar 

  52. Trajcevski, G., Cao, H., Scheuermann, P., Wolfson, O., Vaccaro, D.: On-line data reduction and the quality of history in moving objects databases. In: MobiDE, pp. 19–26 (2006)

    Google Scholar 

  53. International Telecommunication Union: M.1371 : Technical characteristics for an automatic identification system using time-division multiple access in the VHF maritime mobile band. https://www.itu.int/rec/R-REC-M.1371-5-201402-I/en. Retrieved 30 Sept 2019

  54. Vouros, G.A., Vlachou, A., Santipantakis, G.M., Doulkeridis, C., Pelekis, N., Georgiou, H.V., Theodoridis, Y., Patroumpas, K., Alevizos, E., Artikis, A., Claramunt, C., Ray, C., Scarlatti, D., Fuchs, G., Andrienko, G.L., Andrienko, N.V., Mock, M., Camossi, E., Jousselme, A., Garcia, J.M.C.: Big data analytics for time critical mobility forecasting: Recent progress and research challenges. In: EDBT, pp. 612–623 (2018)

    Google Scholar 

  55. Wolfson, O., Sistla, A., Chamberlain, S., Yesha, Y.: Updating and querying databases that track mobile units. Distrib. Parallel Database 7(3), 257–287 (1999)

    Article  Google Scholar 

  56. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: Efficient in-memory spatial analytics. In: SIGMOD, pp. 1071–1085 (2016)

    Google Scholar 

  57. Yu, J., Zhang, Z., Sarwat, M.: Spatial data management in Apache Spark: the GeoSpark perspective and beyond. GeoInformatica 23(1), 37–78 (2019)

    Article  Google Scholar 

  58. Zhang, D., Ding, M., Yang, D., Liu, Y., Fan, J., Shen, H.T.: Trajectory simplification: an experimental study and quality analysis. Proc. VLDB Endow. 11(9), 934–946 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostas Patroumpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patroumpas, K. (2021). Online Mobility Tracking Against Evolving Maritime Trajectories. In: Artikis, A., Zissis, D. (eds) Guide to Maritime Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-61852-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61852-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61851-3

  • Online ISBN: 978-3-030-61852-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics