Skip to main content

aDFR: An Attention-Based Deep Learning Model for Flight Ranking

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

  • 1135 Accesses

Abstract

Although there are numerous available flights for travelers on the online ticket reservation platforms after entering a query, they often make decisions only based on the information of a few flights that are ranked high on the list. Therefore, it has become an important strategy for online travel agencies to rank flights according to their potential popularity. However, to build a ranking function for flights is not an easy task because the preferences of passengers vary from flight routes and change with time. In addition, the selection of a flight is affected by the information of other flights in the same returned list. Traditional Learning to Rank (L2R) methods fail to model the distinct preferences of passengers adaptively on each query. They are also insufficient to capture the complex relationships among flights in the same list. To cope with these challenges, we design an attention-based deep neural network for flight ranking. It adopts two kinds of attention mechanisms to model the dynamic preferences of passengers and the relevance between flights respectively. Extensive experiments on real-world flight order datasets demonstrate the superiority of our method against other competitive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai, Q., Bi, K., Guo, J., Croft, W.B.: Learning a deep listwise context model for ranking refinement. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 135–144 (2018)

    Google Scholar 

  2. Ai, Q., Wang, X., Bruch, S., Golbandi, N., Bendersky, M., Najork, M.: Learning groupwise multivariate scoring functions using deep neural networks. In: Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval, pp. 85–92 (2019)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Budel, G., Hoogenboom, L., Kastrop, W., Reniers, N., Frasincar, F.: Predicting user flight preferences in an airline E-shop. In: Mikkonen, T., Klamma, R., Hernández, J. (eds.) ICWE 2018. LNCS, vol. 10845, pp. 245–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91662-0_19

    Chapter  Google Scholar 

  5. Burges, C., et al.: Learning to rank using gradient descent. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 89–96 (2005)

    Google Scholar 

  6. Burges, C.J., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In: Advances in Neural Information Processing Systems, pp. 193–200 (2007)

    Google Scholar 

  7. Burges, C.J.: From RankNet to LambdaRank to LambdaMART: an overview. Learning 11(23–581), 81 (2010)

    Google Scholar 

  8. Cao, J., Yang, F., Xu, Y., Tan, Y., Xiao, Q.: Personalized flight recommendations via paired choice modeling. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 1265–1270. IEEE (2017)

    Google Scholar 

  9. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: International Conference on Machine Learning (2007)

    Google Scholar 

  10. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 129–136 (2007)

    Google Scholar 

  11. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.S.: Attentive collaborative filtering: multimedia recommendation with item-and component-level attention. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–344 (2017)

    Google Scholar 

  12. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5659–5667 (2017)

    Google Scholar 

  13. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  14. Cheng, Z., Ding, Y., He, X., Zhu, L., Song, X., Kankanhalli, M.S.: A\(^\wedge \)3NCF: an adaptive aspect attention model for rating prediction. In: IJCAI, pp. 3748–3754 (2018)

    Google Scholar 

  15. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S.: Temporal relational ranking for stock prediction. ACM Trans. Inf. Syst. (TOIS) 37(2), 1–30 (2019)

    Article  Google Scholar 

  16. Gey, F.C.: Inferring probability of relevance using the method of logistic regression. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 222–231. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_23

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  18. He, X., et al.: Practical lessons from predicting clicks on ads at Facebook. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, pp. 1–9 (2014)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  20. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142 (2002)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Li, P., Wu, Q., Burges, C.J.: McRank: learning to rank using multiple classification and gradient boosting. In: Advances in Neural Information Processing Systems, pp. 897–904 (2008)

    Google Scholar 

  23. Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends® Inf. Retrieval 3(3), 225–331 (2009)

    Google Scholar 

  24. Pei, C., et al.: Personalized re-ranking for recommendation. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 3–11 (2019)

    Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  27. Tay, Y., Luu, A.T., Hui, S.C.: Multi-pointer co-attention networks for recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2309–2318 (2018)

    Google Scholar 

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  29. Wang, B., Klabjan, D.: An attention-based deep net for learning to rank. arXiv preprint arXiv:1702.06106 (2017)

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks (2017)

    Google Scholar 

  31. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  32. Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H.: Listwise approach to learning to rank: theory and algorithm. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1192–1199 (2008)

    Google Scholar 

  33. Ying, H., et al.: Sequential recommender system based on hierarchical attention network. In: IJCAI International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  34. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018)

  35. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. arXiv preprint arXiv:2004.13621 (2020)

  36. Zhou, C., et al.: ATRank: an attention-based user behavior modeling framework for recommendation. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  37. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural networks for semantic segmentation. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  38. Zhuang, T., Ou, W., Wang, Z.: Globally optimized mutual influence aware ranking in e-commerce search. arXiv preprint arXiv:1805.08524 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, Y., Cao, J., Tan, Y., Nie, Q., Lu, X. (2020). aDFR: An Attention-Based Deep Learning Model for Flight Ranking. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics