Skip to main content

Towards Automatic Fingerprinting of Groundwater Aquifers

  • Conference paper
  • First Online:
Technologies and Innovation (CITI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1309))

Included in the following conference series:

Abstract

Geochemical fingerprinting is a rapidly expanding discipline in the earth and environmental sciences, based on the idea that geological processes leave behind physical and chemical patterns in the samples. In recent years, computational statistics and artificial intelligence methods have started to be used to help the process of geochemical fingerprinting. In this paper we consider data from 57 wells located in the province of Ferrara (Italy), all belonging to the same aquifer group and separated into 4 different aquifers. The aquifer from which each well extracts its water is known only in 18 of the 57 cases, while in other 39 cases it can be only hypothesized based on geological considerations. We devise and test a novel automatic technique for geochemical fingerprinting of groundwater by means of which we are able to identify the exact aquifer from which a sample is extracted. Our initial tests returned encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amorosi, A., Bruno, L., Rossi, V., Severi, P., Hajdas, I.: Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, non-marine sequence stratigraphy. Global Planet. Change 112, 12–25 (2014)

    Article  Google Scholar 

  2. Atkinson, P., Tatnall, A.: Introduction: neural networks in remote sensing. Int. J. Remote Sens. 4(18), 699–709 (1997)

    Article  Google Scholar 

  3. Azamathulla, H., Wu, F.: Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput. 2(11), 2902–2905 (2011)

    Article  Google Scholar 

  4. Belkhiri, L., Mouni, L., Narany, T.S., Tiri, A.: Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater Sustain. Dev. 4, 12–22 (2017)

    Article  Google Scholar 

  5. Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-08883-8

    Book  MATH  Google Scholar 

  6. Dasarathy, B.: Nearest Neighbour (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  7. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, London (2001)

    MATH  Google Scholar 

  8. Durillo, J., Nebro, A.: jMetal: a Java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

    Article  Google Scholar 

  9. Emmanouilidis, C., Hunter, A., Macintyre, J., Cox, C.: A multi-objective genetic algorithm approach to feature selection in neural and fuzzy modeling. Evol. Optim. 3(1), 1–26 (2001)

    Google Scholar 

  10. Farhadian, H., Katibeh, H.: New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis. Int. J. Min. Sci. Technol. 27(3), 415–421 (2017)

    Article  Google Scholar 

  11. Galleta, S., Jahn, B., Lanoë, B.V.V., Dia, A., Rossello, E.: Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth Planet Sci. Lett. 156, 157–172 (1989)

    Article  Google Scholar 

  12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  13. Jiang, B., Pei, J.: Outlier detection on uncertain data: objects, instances, and inferences. In: Proceedings of the 27th International Conference on Data Engineering, pp. 422–433 (2011)

    Google Scholar 

  14. Jiménez, F., Sánchez, G., García, J., Sciavicco, G., Miralles, L.: Multi-objective evolutionary feature selection for online sales forecasting. Neurocomputing 234, 75–92 (2017)

    Article  Google Scholar 

  15. Kamber, B.: Geochemical fingerprinting: 40 years of analytical development and real world applications. Appl. Geochem. 24(6), 1074–1086 (2009)

    Article  Google Scholar 

  16. Kozyatnyk, I., Lövgren, L., Tysklind, M., Haglund, P.: Multivariate assessment of barriers materials for treatment of complex groundwater rich in dissolved organic matter and organic and inorganic contaminants. J. Environ. Chem. Eng. 5(4), 3075–3082 (2017)

    Article  Google Scholar 

  17. Lary, D., Alavi, A., Gandomi, A., Walker, A.: Machine learning in geosciences and remote sensing. Geosci. Front. 7(1), 3–10 (2016)

    Article  Google Scholar 

  18. Lary, D., Muller, M., Mussa, H.: Using neural networks to describe tracer correlations. Atmos. Chem. Phys. 4, 143–146 (2004)

    Article  Google Scholar 

  19. Li, B., et al.: ICP-MS trace element analysis of Song dynasty porcelains from Ding, Jiexiu and Guantai kilns, north China. J. Archaeol. Sci. 32, 251–259 (2005)

    Article  Google Scholar 

  20. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  21. Mair, A., El-Kadi, A.: Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. J. Contam. Hydrol. 153, 1–23 (2013)

    Article  Google Scholar 

  22. Martinelli, G., Minissale, A., Verrucchi, C.: Geochemistry of heavily exploited aquifers in the Emilia-Romagna region (Po Valley, Northern Italy). Environ. Geol. 36, 195–206 (1998). https://doi.org/10.1007/s002540050335

    Article  Google Scholar 

  23. Menció, A., et al.: Nitrate pollution of groundwater; all right \(\ldots \), but nothing else? Sci. Total Environ. 539, 241–251 (2016)

    Article  Google Scholar 

  24. Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.C.: A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)

    Article  Google Scholar 

  25. Ozdemir, A.: GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 411(3), 290–308 (2011)

    Article  Google Scholar 

  26. Pepi, S., Vaccaro, C.: Geochemical fingerprints of “Prosecco” wine based on major and trace elements. Environ. Geochem. Health 40, 833–847 (2018). https://doi.org/10.1007/s10653-017-0029-0

    Article  Google Scholar 

  27. Pizzol, L., Zabeo, A., Critto, A., Giubilato, E., Marcomini, A.: Risk-based prioritization methodology for the classification of groundwater pollution sources. Sci. Total Environ. 506, 505–517 (2015)

    Article  Google Scholar 

  28. Ranjbar, A., Mahjouri, N., Cherubini, C.: Development of an efficient conjunctive meta-model-based decision-making framework for saltwater intrusion management in coastal aquifers. J. Hydro-environ. Res. 26, 45–58 (2019)

    Google Scholar 

  29. Ross, J., et al.: Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In: Kimberlites and Related Rocks, pp. 27–832 (1989)

    Google Scholar 

  30. Shahin, M., Jaksa, M., Maier, H.: Artificial neural network applications in geotechnical engineering. Aust. Geomech. 1(36), 49–62 (2001)

    Google Scholar 

  31. Singh, C.K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., Mallick, J.: Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi. India. J. Geochem. Explor. 175, 59–71 (2017)

    Article  Google Scholar 

  32. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  33. Yi, J., Prybutok, V.: A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environ. Pollut. 3(92), 349–357 (1996)

    Article  Google Scholar 

  34. Zuppi, G., Sacchi, E.: Hydrogeology as a climate recorder: Sahara-Sahel (North Africa) and the po plain (Northern Italy). Global Planet. Change 40, 79–91 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estrella Lucena-Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Roma, A., Lucena-Sánchez, E., Sciavicco, G., Vaccaro, C. (2020). Towards Automatic Fingerprinting of Groundwater Aquifers. In: Valencia-García, R., Alcaraz-Marmol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M. (eds) Technologies and Innovation. CITI 2020. Communications in Computer and Information Science, vol 1309. Springer, Cham. https://doi.org/10.1007/978-3-030-62015-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62015-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62014-1

  • Online ISBN: 978-3-030-62015-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics