Skip to main content

Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning

  • Chapter
  • First Online:
Federated Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12500))

Abstract

The availability of various large-scale datasets benefits the advancement of deep learning. These datasets are often crowdsourced from individual users and contain private information like gender, age, etc. Due to rich private information embedded in the raw data, users raise the concerns on privacy leakage from the shared data. Such privacy concerns will hinder the generation or use of crowdsourcing datasets and lead to hunger of training data for new deep learning applications. In this work, we present TAP, a task-agnostic privacy-preserving representation learning framework to protect data privacy with anonymized intermediate representation. The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks. We adopt the federated learning paradigm to train the feature extractor, such that learning the extractor is also performed in a privacy-respecting fashion. We extensively evaluate TAP and compare it with existing methods using two image datasets and one text dataset. Our results show that TAP can offer a good privacy-utility tradeoff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avent, B., Korolova, A., Zeber, D., Hovden, T., Livshits, B.: Blender: enabling local search with a hybrid differential privacy model. In: 26th USENIX Security Symposium (USENIX Security 17), pp. 747–764 (2017)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Bassily, R., Smith, A.: Local, private, efficient protocols for succinct histograms. In: Proceedings of the Forty-seventh Annual ACM Symposium on Theory of Computing, pp. 127–135 (2015)

    Google Scholar 

  4. Blodgett, S.L., Green, L., O’Connor, B.: Demographic dialectal variation in social media: a case study of African-american English. arXiv preprint arXiv:1608.08868 (2016)

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Advances in Neural Information Processing Systems, pp. 658–666 (2016)

    Google Scholar 

  7. Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4829–4837 (2016)

    Google Scholar 

  8. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438. IEEE (2013)

    Google Scholar 

  9. Erlingsson, U., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067 (2014)

    Google Scholar 

  10. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670 (2018)

  13. Kim, T.h., Kang, D., Pulli, K., Choi, J.: Training with the invisibles: obfuscating images to share safely for learning visual recognition models. arXiv preprint arXiv:1901.00098 (2019)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, December 2014

  15. Konecny, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Li, A., Duan, Y., Yang, H., Chen, Y., Yang, J.: TIPRDC: task-independent privacy-respecting data crowdsourcing framework for deep learning with anonymized intermediate representations. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2020, pp. 824–832. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3394486.3403125

  18. Li, A., Guo, J., Yang, H., Chen, Y.: DeepObfuscator: adversarial training framework for privacy-preserving image classification. arXiv preprint arXiv:1909.04126 (2019)

  19. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)

    Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Liu, S., Du, J., Shrivastava, A., Zhong, L.: Privacy adversarial network: representation learning for mobile data privacy. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3(4), 1–18 (2019)

    Google Scholar 

  22. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  23. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  24. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

    Google Scholar 

  25. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)

    Google Scholar 

  26. Oh, S.J., Benenson, R., Fritz, M., Schiele, B.: Faceless person recognition: privacy implications in social media. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 19–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_2

    Chapter  Google Scholar 

  27. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protection a game theory perspective. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1491–1500. IEEE (2017)

    Google Scholar 

  28. Oord, A.v.d., et al.: WaveNet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  29. Osia, S.A., et al.: A hybrid deep learning architecture for privacy-preserving mobile analytics. IEEE Internet Things J. 7, 4505–4518 (2020)

    Article  Google Scholar 

  30. Peng, X.B., Kanazawa, A., Toyer, S., Abbeel, P., Levine, S.: Variational discriminator bottleneck: improving imitation learning, inverse RL, and GANs by constraining information flow. arXiv preprint arXiv:1810.00821 (2018)

  31. Pittaluga, F., Koppal, S., Chakrabarti, A.: Learning privacy preserving encodings through adversarial training. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 791–799. IEEE (2019)

    Google Scholar 

  32. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation over set-valued data with local differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 192–203 (2016)

    Google Scholar 

  33. Smith, A., Thakurta, A., Upadhyay, J.: Is interaction necessary for distributed private learning? In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 58–77. IEEE (2017)

    Google Scholar 

  34. Song, J., Kalluri, P., Grover, A., Zhao, S., Ermon, S.: Learning controllable fair representations. arXiv preprint arXiv:1812.04218 (2018)

  35. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  36. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)

  37. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition via adversarial training: a pilot study. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 627–645. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_37

    Chapter  Google Scholar 

  38. Yonetani, R., Naresh Boddeti, V., Kitani, K.M., Sato, Y.: Privacy-preserving visual learning using doubly permuted homomorphic encryption. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2040–2050 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF-1822085 and NSF IUCRC for ASIC membership from Ergomotion. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF and their contractors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, A., Yang, H., Chen, Y. (2020). Task-Agnostic Privacy-Preserving Representation Learning via Federated Learning. In: Yang, Q., Fan, L., Yu, H. (eds) Federated Learning. Lecture Notes in Computer Science(), vol 12500. Springer, Cham. https://doi.org/10.1007/978-3-030-63076-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63076-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63075-1

  • Online ISBN: 978-3-030-63076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics