Skip to main content

TransNet: Unseen Malware Variants Detection Using Deep Transfer Learning

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2020)

Abstract

The ever-increasing amount and variety of malware on the Internet have presented significant challenges to the interconnected network community. The emergence of unseen malware variants has resulted in a different distribution of features and labels in the training and testing datasets. For widely used machine learning-based detection methods, the issue of dataset shift will render the trained model ineffective in the face of new data. However, it is a laborious and tedious undertaking whether relearning features to describe new data or collecting large amounts of labeled samples to retrain the classifiers. To address these problems, this paper proposes TransNet, a framework based on deep transfer learning for unseen malware variants detection. We first convert the raw traffic represented by sessions containing data from all layers of the OSI model into fixed-size RGB images through data preprocessing. Afterward, based on the ResNet-50 model pre-trained on the ImageNet, we replace Batch Normalization with Transferable Normalization as the normalization layer to construct our deep transfer learning model. In this way, our approach leverages deep learning to avoid the problem of traditional machine learning in relying on expert knowledge and uses transfer learning to address the issue of domain shift. We test the effectiveness of different methods with a thorough set of experiments. TransNet achieves 95.89% accuracy and 96.09% F-measure on two public datasets from the real-world environment, which is higher than comparative methods. Meantime, our method ranks first on all ten subtasks, showing that it can detect unseen malware variants with stable and excellent performance. Moreover, the distribution discrepancy computed by our method is much smaller than other approaches, which illustrates that our method successfully reduces the shift of data distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B., McGrew, D.: Identifying encrypted malware traffic with contextual flow data. Proc. ACM Workshop Artif. Intell. Secur. 2016, 35–46 (2016)

    Google Scholar 

  2. Wang, T.S., Lin, H.T., Cheng, W.T., et al.: DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis. Comput. Secur. 64, 1–15 (2017)

    Article  Google Scholar 

  3. Kovanen, T., David, G., Hämäläinen, T.: Survey: intrusion detection systems in encrypted traffic. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 281–293. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46301-8_23

    Chapter  Google Scholar 

  4. Wang, W., Sheng, Y., Wang, J., et al.: HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE Access 6, 1792–1806 (2017)

    Article  Google Scholar 

  5. Zhao, S., Ma, X., Zou, W., Bai, B.: DeepCG: classifying metamorphic malware through deep learning of call graphs. In: Chen, S., Choo, K.-K.R., Fu, X., Lou, W., Mohaisen, A. (eds.) SecureComm 2019. LNICST, vol. 304, pp. 171–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37228-6_9

    Chapter  Google Scholar 

  6. Tencent Security: https://s.tencent.com/research/report/790.html. August 2019

  7. Kumar, V., Sangwan, O.P.: Signature based intrusion detection system using SNORT. Int. J. Comput. Appl. Inf. Technol. 1(3), 35–41 (2012)

    Google Scholar 

  8. Timcenko, V., Gajin, S.: Ensemble classifiers for supervised anomaly based network intrusion detection. In: 2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 13–19. IEEE (2017)

    Google Scholar 

  9. AlAhmadi, B.A., Martinovic, I.: Malclassifier: alware family classification using network flow sequence behaviour. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–13. IEEE (2018)

    Google Scholar 

  10. Kohout, J, Pevný, T.: Unsupervised detection of malware in persistent web traffic. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1757–1761. IEEE (2015)

    Google Scholar 

  11. Alom, M.Z., Taha, T.M.: Network intrusion detection for cyber security using unsupervised deep learning approaches. In: 2017 IEEE National Aerospace and Electronics Conference (NAECON), pp. 63–69. IEEE (2017)

    Google Scholar 

  12. Bartos, K, Sofka, M, Franc, V.: Optimized invariant representation of network traffic for detecting unseen malware variants. In: 25th USENIX Security Symposium (USENIX Security 16), pp. 807–822 (2016)

    Google Scholar 

  13. Li, H., Chen, Z., Spolaor, R., et al.: DART: detecting unseen malware variants using adaptation regularization transfer learning. In: ICC 2019–2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Zhao, J., Shetty, S., Pan, J.W.: Feature-based transfer learning for network security. In: MILCOM 2017–2017 IEEE Military Communications Conference (MILCOM), pp. 17–22. IEEE (2017)

    Google Scholar 

  15. Zhao, J., Shetty, S., Pan, J.W., et al.: Transfer learning for detecting unknown network attacks. EURASIP J. Inf. Secur. 2019(1), 1 (2019)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  18. Rezende, E., Ruppert, G., Carvalho, T., et al.: Malicious software classification using transfer learning of resnet-50 deep neural network. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1011–1014. IEEE (2017)

    Google Scholar 

  19. Rezende, E., Ruppert, G., Carvalho, T., Theophilo, A., Ramos, F., Geus, P.: Malicious software classification using VGG16 deep neural network’s bottleneck features. In: Latifi, S. (ed.) Information Technology - New Generations. AISC, vol. 738, pp. 51–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77028-4_9

    Chapter  Google Scholar 

  20. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Wang, X., Jin, Y., Long, M., et al.: Transferable normalization: towards improving transferability of deep neural networks. In: Advances in Neural Information Processing Systems, pp. 1951–1961 (2019)

    Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  23. Hubballi, N., Suryanarayanan, V.: False alarm minimization techniques in signature-based intrusion detection systems: a survey. Comput. Commun. 49, 1–17 (2014)

    Article  Google Scholar 

  24. Long, M., Zhu, H., Wang, J., et al.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217. JMLR. org (2017)

    Google Scholar 

  25. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  26. Long, M., Wang, J., Ding, G., et al.: Adaptation regularization: a general framework for transfer learning. IEEE Trans. Knowl. Data Eng. 26(5), 1076–1089 (2013)

    Article  Google Scholar 

  27. Wiesler, S., Ney, H.: A convergence analysis of log-linear training. In: Advances in Neural Information Processing Systems, pp. 657–665 (2011)

    Google Scholar 

  28. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., et al.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  29. Student: The probable error of a mean. Biometrika 6(1), 1–25 (1908)

    Article  Google Scholar 

  30. Wang, W., Zhu, M., Zeng, X., et al.: Malware traffic classification using convolutional neural network for representation learning. In: 2017 International Conference on Information Networking (ICOIN), pp. 712–717. IEEE (2017)

    Google Scholar 

  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  33. Stratosphere: Stratosphere Laboratory Datasets. (2015). Retrieved March 13, 2020, fromhttps://www.stratosphereips.org/datasets-overview

  34. Borgwardt, K.M., Gretton, A., Rasch, M.J., et al.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Natural Science Foundation of China (No.61702501) and The National Key Research and Development Program of China (No.2016QY05X1000, No.2018YFB1800200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rong, C., Gou, G., Cui, M., Xiong, G., Li, Z., Guo, L. (2020). TransNet: Unseen Malware Variants Detection Using Deep Transfer Learning. In: Park, N., Sun, K., Foresti, S., Butler, K., Saxena, N. (eds) Security and Privacy in Communication Networks. SecureComm 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 336. Springer, Cham. https://doi.org/10.1007/978-3-030-63095-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63095-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63094-2

  • Online ISBN: 978-3-030-63095-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics