Skip to main content

Mechanically Interlocked Systems: Photoactive Rotaxanes and Catenanes

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

  • 4414 Accesses

Abstract

The mechanical bond offers novel and intriguing opportunities to connect together molecular components and arrange them in space. Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes can indeed be designed to operate as molecular devices, that is, to accomplish function(s) that arise(s) from the cooperation of their molecular components. In this chapter we will deal with rotaxane- and catenane-based architectures characterized by two main features: (i) the presence of inorganic moieties in the molecular structure and (ii) the integration of photoactive units. Here we focus on metal complexes as inorganic moieties, which can play the dual role of scaffolds for the construction of the molecules and for controlling the spatial arrangement of the components, and of functional units, because they present peculiar photophysical and electrochemical properties. The use of light to operate molecular devices and machines has long been acknowledged as a most valuable choice under several aspects. In this regard, for the sake of clarity, we have classified the selected examples in two main categories: photoactive systems, which are characterized by photoinduced processes within the components of the interlocked architecture, and photoactivated systems, wherein light is used to cause a mechanical rearrangement of the components. The examples discussed will show how the union of the structural control offered by the mechanical bond with the tools of inorganic chemistry can lead to the realization of complex structures with sophisticated functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruns, C.J., Stoddart, J.F.: The Nature of the Mechanical Bond. Wiley, Hoboken (2017)

    Google Scholar 

  2. Sauvage, J.-P., Dietrich-Buchecker, C.: Molecular Catenanes, Rotaxanes and Knots. Wiley-VCH, Weinheim (1999)

    Book  Google Scholar 

  3. Ashton, P.R., Baxter, I., Fyfe, M.C.T., et al.: Rotaxane or Pseudorotaxane? That Is the Question! J. Am. Chem. Soc. 120, 2297–2397 (1998)

    Google Scholar 

  4. Balzani, V., Venturi, M., Credi, A.: Molecular Devices and Machines: A Journey Into the Nanoworld, 2nd edn. Wiley-VCH, Weinheim (2008)

    Book  Google Scholar 

  5. (a) Balzani, V., Credi, A., Venturi, M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009); (b) Silvi, S., Venturi, M., Credi, A.: Light operated molecular machines. Chem. Commun. 47, 2483–2489 (2011); (c) Ceroni, P., Credi, A., Venturi, M.: Light to investigate (read) and operate (write) molecular devices and machines. Chem. Soc. Rev. 43, 4068–4083 (2014)

    Google Scholar 

  6. Ceroni, P., Balzani, V., Juris, A.: Photochemistry and Photophysics: Concepts, Research, Applications. Wiley-VCH, Weinheim (2014)

    Google Scholar 

  7. (a) Dietrich-Buchecker, C.O., Sauvage, J-P.: Une nouvelle famille de molecules : les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983); (b) Dietrich-Buchecker, C.O., Sauvage, J.P., Kern, J.M.: Templated synthesis of interlocked macrocyclic ligands: the catenands. J. Am. Chem. Soc. 106, 3043–3045 (1984); (c) Dietrich-Buchecker, C.O., Sauvage, J.P.: Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795–810 (1987)

    Google Scholar 

  8. Sauvage, J.P.: From Chemical Topology to Molecular Machines (Nobel Lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017)

    Google Scholar 

  9. Van Gaal, H.L.M., Van Der Linden, J.G.M.: Trends in redox potentials of transition metal complexes. Coord. Chem. Rev. 47, 41–54 (1982)

    Google Scholar 

  10. Juris, A., Balzani, V., Barigelletti, F., et al.: Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85–277 (1988)

    Google Scholar 

  11. Campagna, S., Puntoriero, F., Nastasi, F., et al.: Photochemistry and Photophysics of Coordination Compounds: Ruthenium. Top. Curr. Chem. 280, 117–214 (2007)

    Google Scholar 

  12. Kadish, K.M., Smith, K.M., Guilard, R. (eds.): The Porphyrin Handbook. Academic Press, New York (1999)

    Google Scholar 

  13. Andersson, M., Lynke, M., Chambron, J.-C., et al.: Porphyrin-containing [2]-Rotaxanes:  Metal Coordination Enhanced Superexchange Electron Transfer between Noncovalently Linked Chromophores. J. Am. Chem. Soc. 122, 3526–3527 (2000)

    Google Scholar 

  14. Andersson, M., Lynke, M., Chambron, J.-C., et al.: Long-Range Electron Transfer in Porphyrin-Containing [2]-Rotaxanes:  Tuning the Rate by Metal Cation Coordination. J. Am. Chem. Soc. 124, 4347–4362 (2002)

    Google Scholar 

  15. Echegoyen, L., Echegoyen, L.E.: Electrochemistry of Fullerenes and Their Derivatives. Acc. Chem. Res. 31, 593–601 (1998)

    Google Scholar 

  16. Guldi, D.M.: Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem. Soc. Rev. 31, 22–36 (2002)

    Google Scholar 

  17. Zhang, G., Gil-Ramírez, G., Markevicius, A., et al.: Lanthanide Template Synthesis of Trefoil Knots of Single Handedness. J. Am. Chem. Soc. 137, 10437–10442 (2015)

    Google Scholar 

  18. (a) Bünzli, J.C.G., Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005); (b) Armelao, L., Quici, S., Barigelletti, F., et al.: Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 254, 487–505 (2010)

    Google Scholar 

  19. Lynke, M., Chambron, J.-C., Heinz, V., et al.: Electron Transfer between Mechanically Linked Porphyrins in a [2]Rotaxane. J. Am. Chem. Soc. 119, 11329–11330 (1997)

    Google Scholar 

  20. Megiatto, J.D., Schuster, D.I., De Miguel, G., et al.: Topological and Conformational Effects on Electron Transfer Dynamics in Porphyrin-[60]Fullerene Interlocked Systems. Chem. Mater. 24, 2472–2485 (2012)

    Google Scholar 

  21. Imahori, H., El-Khouly, M.E., Fujitsuka, M., et al.: Solvent Dependence of Charge Separation and Charge Recombination Rates in Porphyrin−Fullerene Dyad. J. Phys. Chem. A. 105, 325–332 (2001)

    Google Scholar 

  22. (a) Rajkumar, G.A., Sandanayaka, A.S.D., Ikeshita, K., et al.: Prolongation of the Lifetime of the Charge-Separated State at Low Temperatures in a Photoinduced Electron-Transfer System of [60]Fullerene and Ferrocene Moieties Tethered by Rotaxane Structures. J. Phys. Chem. B 110, 6516–6525 (2006); (b) Marois, J-S., Cantin, K., Desmarais, A., Morin, J-F.: [3]Rotaxane−Porphyrin Conjugate as a Novel Supramolecular Host for Fullerenes. Org. Lett. 10, 33–36 (2008)

    Google Scholar 

  23. Watanabe, N., Kihara, N., Furusho, Y., et al.: Photoinduced Intrarotaxane Electron Transfer between Zinc Porphyrin and [60]Fullerene in Benzonitrile. Angew. Chem. Int. Ed. 42, 681–683 (2003)

    Google Scholar 

  24. Li, K., Schuster, D.I., Guldi, D.M., et al.: Convergent Synthesis and Photophysics of [60]Fullerene/Porphyrin-Based Rotaxanes. J. Am. Chem. Soc. 126, 3388–3389 (2004)

    Google Scholar 

  25. Jakob, M., Berg, A., Rubin, R., et al.: Photoinduced Electron Transfer in Porphyrin- and Fullerene/Porphyrin-Based Rotaxanes as Studied by Time-Resolved EPR Spectroscopy. J. Phys. Chem. A. 113, 5846–5854 (2009)

    Google Scholar 

  26. Li, K., Bracher, P.J., Guldi, D.M., et al.: [60]Fullerene-Stoppered Porphyrinorotaxanes:  Pronounced Elongation of Charge-Separated-State Lifetimes. J. Am. Chem. Soc. 126, 9156–9157 (2004)

    Google Scholar 

  27. Armaroli, N., Diederich, F., Dietrich-Buchecker, C.O., et al.: A Copper(I)-Complexed Rotaxane with Two Fullerene Stoppers: Synthesis, Electrochemistry, and Photoinduced Processes. Chem. Eur. J. 4, 406–416 (1998)

    Google Scholar 

  28. Kirner, S.V., Henkel, C., Guldi, D.M., et al.: Multistep energy and electron transfer processes in novel rotaxane donor–acceptor hybrids generating microsecond-lived charge separated states. Chem. Sci. 6, 7293–7304 (2015)

    Google Scholar 

  29. (a) Megiatto, J.D., Spencer, R., Schuster, D.I.: Efficient One-Pot Synthesis of Rotaxanes Bearing Electron Donors and [60]Fullerene. Org. Lett. 11, 4152–4155 (2009); (b) Megiatto, J.D., Spencer, R., Schuster, D.I.: Optimizing reaction conditions for synthesis of electron donor-[60]fullerene interlocked multiring systems. J. Mater. Chem. 21, 1544–1550 (2011)

    Google Scholar 

  30. Lynke, M., Chambron, J.-C., Heinz, V., et al.: Multiporphyrinic Rotaxanes: Control of Intramolecular Electron Transfer Rate by Steering the Mutual Arrangement of the Chromophores. J. Am. Chem. Soc. 122, 11834–11844 (2000)

    Google Scholar 

  31. Megiatto, J.D., Schuster, D.I., Abwandner, S., et al.: [2]Catenanes Decorated with Porphyrin and [60]Fullerene Groups: Design, Convergent Synthesis, and Photoinduced Processes. J. Am. Chem. Soc. 132, 3847–3861 (2010)

    Google Scholar 

  32. Flaigni, L., Talarico, A.M., Chambron, J.-C., et al.: Photoinduced Electron Transfer in Multiporphyrinic Interlocked Structures: The Effect of Copper(I) Coordination in the Central Site. Chem. Eur. J. 10, 2689–2699 (2004)

    Google Scholar 

  33. Albrecht-Gary, A.M., Saad, Z., Dietrich-Buchecker, C.O., Sauvage, J.P.: Interlocked macrocyclic ligands: a kinetic catenand effect in copper(I) complexes. J. Am. Chem. Soc. 107, 3205–3209 (1985)

    Google Scholar 

  34. Ferrer, B., Rogez, G., Credi, A., et al.: Photoinduced electron flow in a self-assembling supramolecular extension cable. Proc. Natl. Acad. Sci. U. S. A. 103, 18411–18416 (2006)

    Google Scholar 

  35. Flamigni, L., Armaroli, N., Barigelletti, F., et al.: Photoinduced processes in porphyrin-stoppered [3]-rotaxanes. New J. Chem. 23, 1151–1158 (1999)

    Google Scholar 

  36. Trolez, Y., Finke, A.D., Silvestri, F., et al.: Unconventional Synthesis of a CuI Rotaxane with a Superacceptor Stopper: Ultrafast Excited-State Dynamics and Near-Infrared Luminescence. Chem. Eur. J. 24, 10422–10433 (2018)

    Google Scholar 

  37. Delavaux-Nicot, B., Ben Aziza, H., Nierengarten, I., et al.: A Rotaxane Scaffold for the Construction of Multiporphyrinic Light-Harvesting Devices. Chem. Eur. J. 24, 133–140 (2018)

    Google Scholar 

  38. Maeda, C., Yamaguchi, S., Ikeda, C., et al.: Dimeric Assemblies from 1,2,3-Triazole-Appended Zn(II) Porphyrins with Control of NH-Tautomerism in 1,2,3-Triazole. Org. Lett. 10, 549–552 (2008)

    Google Scholar 

  39. Trinh, T.M.N., Nierengarten, I., Ben Aziza, H., et al.: Coordination-Driven Folding in Multi-ZnII-Porphyrin Arrays Constructed on a Pillar[5]arene Scaffold. Chem. Eur. J. 23, 11011–11021 (2017)

    Google Scholar 

  40. Han, M., Zhang, H.-Y., Yang, L.-X., et al.: A Reversible Luminescent Lanthanide Switch Based on a Dibenzo[24]-Crown-8−Dipicolinic Acid Conjugate. Org. Lett. 10, 5557–5560 (2008)

    Google Scholar 

  41. Ding, Z.-J., Zhang, Y.-M., Teng, X., Liu, Y.: Controlled Photophysical Behaviors between Dibenzo-24-crown-8 Bearing Terpyridine Moiety and Fullerene-Containing Ammonium Salt. J. Org. Chem. 76, 1910–1913 (2011)

    Google Scholar 

  42. Erbas-Cakmak S., Leigh, D.A., McTernan, C.T., et al.: Artificial Molecular Machines. Chem. Rev. 115, 10081–10206 (2015)

    Google Scholar 

  43. (a) Everly, R.M., McMillin, D.R.: Reinvestigation of the absorbing and emitting charge-transfer excited states of [Cu(NN)2]+ systems. J. Phys. Chem. 95, 9071–9075 (1991); (b) Gushurst, A.K.I., McMillin, D.R., Dietrich-Buchecker, C.O., Sauvage, J.P.: Comparative studies of the photophysical properties of copper phenanthrolines: from Cu(dmp)2+ to the copper(I) catenates. Inorg. Chem. 28, 4070–4072 (1989); (c) Ruthkosky, M., Castellano, F.N., Meyer, G.J.: Photodriven Electron and Energy Transfer from Copper Phenanthroline Excited States. Inorg. Chem. 35, 6406–6412 (1996)

    Google Scholar 

  44. Livoreil, A., Sauvage, J.-P., Armaroli, N., et al.: Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. J. Am. Chem. Soc. 119, 12114–12124 (1997)

    Google Scholar 

  45. Armaroli, N., Balzani, V., Collin, J.-P., et al.: Rotaxanes Incorporating Two Different Coordinating Units in Their Thread:  Synthesis and Electrochemically and Photochemically Induced Molecular Motions. J. Am. Chem. Soc. 121, 4397–4408 (1999)

    Google Scholar 

  46. Kelly, L.A., Rodgers, M.A.J.: Inter- and Intramolecular Oxidative Quenching of Mixed Ligand Tris(bipyridyl)ruthenium(II) Complexes by Methyl Viologen. J. Phys. Chem. 99, 13132–13140 (1995)

    Google Scholar 

  47. Anelli, P.L., Ashton, P.R., Ballardini, R., et al.: Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order. J. Am. Chem. Soc. 114, 193–218 (1992)

    Google Scholar 

  48. Ashton, P.R., Ballardini, R., Balzani, V., et al.: A Photochemically Driven Molecular-Level Abacus. Chem. Eur. J. 6, 3558–3574 (2000)

    Google Scholar 

  49. Balzani, V., Clemente-León, M., Credi, A., et al.: Autonomous artificial nanomotor powered by sunlight. Proc. Natl. Acad. Sci. U. S. A. 103, 1178–1183 (2006)

    Google Scholar 

  50. Scarpantonio, L., Tron, A., Destribats, C., et al.: Concatenation of reversible electronic energy transfer and photoinduced electron transfer to control a molecular piston. Chem. Commun. 48, 3981–3983 (2012)

    Google Scholar 

  51. Ashton, P.R., Balzani, V., Kocian, O., et al.: A Light-Fueled “Piston Cylinder” Molecular-Level Machine. J. Am. Chem. Soc. 120, 11190–11191 (1998)

    Google Scholar 

  52. Ford, W.E., Rodgers, M.A.J.: Reversible triplet-triplet energy transfer within a covalently linked bichromophoric molecule. J. Phys. Chem. 96, 2917–2920 (1992)

    Google Scholar 

  53. Qu, D.H., Tian, H.: Novel and efficient templates for assembly of rotaxanes and catenanes. Chem. Sci. 2, 1011–1015 (2011)

    Google Scholar 

  54. Trabolsi, A., Khashab, N., Fahrenbach, A.C., et al.: Radically enhanced molecular recognition. Nat. Chem. 2, 42–49 (2010)

    Google Scholar 

  55. Li, H., Fahrenbach, A.C., Dey, S.K., et al.: Mechanical Bond Formation by Radical Templation. Angew. Chem. Int. Ed. 49, 8260–8265 (2010)

    Google Scholar 

  56. Li, H., Fahrenbach, A.C., Coskun, A., et al.: A Light-Stimulated Molecular Switch Driven by Radical–Radical Interactions in Water. Angew. Chem. Int. Ed. 50, 6782–6788 (2011)

    Google Scholar 

  57. Sun, J., Wu, Y., Liu, Z., et al.: Visible Light-Driven Artificial Molecular Switch Actuated by Radical–Radical and Donor–Acceptor Interactions. J. Phys. Chem. A. 119, 6317–6325 (2015)

    Google Scholar 

  58. Jeon, W.S., Kim, H.-J., Lee, C., et al.: Control of the stoichiometry in host–guest complexation by redox chemistry of guests: Inclusion of methylviologen in cucurbit[8]uril. Chem. Commun. 0, 1828–1829 (2002)

    Google Scholar 

  59. Monhaphol, T.K., Andersson, S., Sun, L.: Isolated Supramolecular [Ru(bpy)3]–Viologen–[Ru(bpy)3] Complexes with Trapped CB[7,8] and Photoinduced Electron-Transfer Study in Nonaqueous Solution. Chem. Eur. J. 17, 11604–11612 (2011)

    Google Scholar 

  60. Barigelletti, F., Juris, A., Balzani, V., et al.: Excited-State Properties of Complexes of the Ru(diimine)32+ Family. Inorg. Chem. 22, 3335–3339 (1983)

    Google Scholar 

  61. Collin, J.-P., Jouvenot, D., Koizumi, M., et al.: A Ruthenium(II)-Complexed Rotaxane Whose Ring Incorporates a 6,6′-Diphenyl-2,2′-bipyridine: Synthesis and Light-Driven Motions. Eur. J. Inorg. Chem. 2005, 1850–1855 (2005)

    Google Scholar 

  62. Mobian, P., Kern, J.M., Sauvage, J.P.: Light-Driven Machine Prototypes Based on Dissociative Excited States: Photoinduced Decoordination and Thermal Recoordination of a Ring in a Ruthenium(II)-Containing [2]Catenane. Angew. Chem. Int. Ed. 43, 2392–2395 (2004)

    Google Scholar 

  63. Schäfer, C., Ragazzon, G., Colasson, B., et al.: An Artificial Molecular Transporter. Chem. Open. 5, 120–124 (2016)

    Google Scholar 

  64. Hecker, C.R., Fanwick, P.E., McMillin, D.R.: Evidence for Dissociative Photosubstitution Reactions of [Ru(trpy)(bpy)(NCCH3)]2+. Crystal and Molecular Structure of [Ru(trpy)(bpy)(py)](PF6)2·(CH3)2CO. Inorg. Chem. 30, 659–666 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Credi or Serena Silvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baroncini, M., Canton, M., Casimiro, L., Credi, A., Silvi, S. (2022). Mechanically Interlocked Systems: Photoactive Rotaxanes and Catenanes. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_22

Download citation

Publish with us

Policies and ethics