Skip to main content

Deep Convolutional Transform Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

This work introduces a new unsupervised representation learning technique called Deep Convolutional Transform Learning (DCTL). By stacking convolutional transforms, our approach is able to learn a set of independent kernels at different layers. The features extracted in an unsupervised manner can then be used to perform machine learning tasks, such as classification and clustering. The learning technique relies on a well-sounded alternating proximal minimization scheme with established convergence guarantees. Our experimental results show that the proposed DCTL technique outperforms its shallow version CTL, on several benchmark datasets.

This work was supported by the CNRS-CEFIPRA project under grant NextGenBP PRC2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also http://proximity-operator.net/.

  2. 2.

    http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

References

  1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137, 91–129 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chabiron, O., Malgouyres, F., Tourneret, J.: Toward fast transform learning. Int. J. Comput. Vis. 114, 195–216 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chan, M.C., Stott, J.P.: Deep-CEE I: fishing for galaxy clusters with deep neural nets. Mon. Not. R. Astron. Soc. 490(4), 5770–5787 (2019)

    Article  Google Scholar 

  4. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66(3), 457–485 (2016)

    Article  MathSciNet  Google Scholar 

  5. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol. 69, pp. 185–212. Springer-Verlag, New York (2010). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  Google Scholar 

  6. D.J.: The Yale face database (1997). http://cvc.yale.edu/projects/yalefaces/yalefaces.html. 1(2), 4

  7. El Gheche, M., Chierchia, G., Frossard, P.: Multilayer network data clustering. IEEE Trans. Signal Inf. Process. Over Netw. 6(1), 13–23 (2020)

    MathSciNet  Google Scholar 

  8. Fagot, D., Wendt, H., Févotte, C., Smaragdis, P.: Majorization-minimization algorithms for convolutive NMF with the beta-divergence. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), pp. 8202–8206 (2019)

    Google Scholar 

  9. Hannun, A.Y., et al.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25(1), 65 (2019)

    Article  Google Scholar 

  10. Kempter, R., Gerstner, W., Van Hemmen, J.L.: Hebbian learning and spiking neurons. Phys. Rev. E 59(4), 4498 (1999)

    Article  MathSciNet  Google Scholar 

  11. Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 5, 684–698 (2005)

    Google Scholar 

  12. Maggu, J., Chouzenoux, E., Chierchia, G., Majumdar, A.: Convolutional transform learning. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11303, pp. 162–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04182-3_15

    Chapter  Google Scholar 

  13. Martinez, A.M.: The AR face database. CVC Technical Report24 (1998)

    Google Scholar 

  14. Mason, E., Yonel, B., Yazici, B.: Deep learning for radar. In: 2017 IEEE Radar Conference (RadarConf), pp. 1703–1708. IEEE (2017)

    Google Scholar 

  15. Ravishankar, S., Bresler, Y.: Learning sparsifying transforms. IEEE Trans. Signal Process. 61(5), 1072–1086 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ravishankar, S., Bresler, Y.: Online sparsifying transform learning - Part II. IEEE J. Sel. Topics Signal Process. 9(4), 637–646 (2015)

    Article  Google Scholar 

  17. Ravishankar, S., Wen, B., Bresler, Y.: Online sparsifying transform learning - Part I. IEEE J. Sel. Topics Signal Process. 9(4), 625–636 (2015)

    Article  Google Scholar 

  18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  19. Tang, W., Chouzenoux, E., Pesquet, J., Krim, H.: Deep transform and metric learning network: wedding deep dictionary learning and neural networks. Technical report (2020). https://arxiv.org/pdf/2002.07898.pdf

  20. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without gradients: a scalable ADMM approach. In: International Conference on Machine Learning, pp. 2722–2731 (2016)

    Google Scholar 

  21. Van Gerven, M., Bohte, S.: Artificial neural networks as models of neural information processing. Front. Comput. Neurosci. 11, 114 (2017)

    Article  Google Scholar 

  22. Ye, J.C., Han, Y., Cha, E.: Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imaging Sci. 11(2), 991–1048 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshul Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maggu, J., Majumdar, A., Chouzenoux, E., Chierchia, G. (2020). Deep Convolutional Transform Learning. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics