Skip to main content

Double Replay Buffers with Restricted Gradient

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12533))

Included in the following conference series:

  • 2409 Accesses

Abstract

In this paper we consider the problem of how to balance exploration and exploitation in deep reinforcement learning (DRL). We propose a generative method called double replay buffers with restricted gradient (DRBRG). DRBRG divides the replay buffer in experience replay into two parts: the exploration buffer and the exploitation buffer. The two replay buffers with different retention policies can increase sample diversity to prevent over-fitting caused by exploiting. In order to avoid the deviation of the current policy from the past behaviors by exploring, we introduce a gradient penalty to limit the policy change into a trust region. We compare our method with other methods using experience replay on continuous-action environments. Empirical results show that our method outperforms existing methods both in training performance and generalization performance.

This work is in part supported by the Natural Science Foundation of China (61876119), the Natural Science Foundation of Jiangsu (BK20181432) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural Information Processing Systems (NIPS), pp. 5055–5065 (2017)

    Google Scholar 

  2. Babuška, R., Groen, F.C.: Interactive Collaborative Information Systems. SCI. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11688-9

    Book  MATH  Google Scholar 

  3. Bellman, R.: Dynamic programming and stochastic control processes. Inf. Control 1(3), 228–239 (1958)

    Article  MathSciNet  Google Scholar 

  4. Brockman, G., et al.: OpenAI Gym. CoRR abs/1606.01540 (2016). http://arxiv.org/abs/1606.01540

  5. de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: Improved deep reinforcement learning for robotics through distribution-based experience retention. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3947–3952. IEEE (2016)

    Google Scholar 

  6. de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: Off-policy experience retention for deep actor-critic learning. In: Deep Reinforcement Learning Workshop, Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  7. de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: Experience selection in deep reinforcement learning for control. J. Mach. Learn. Res. 19(1), 347–402 (2018)

    MathSciNet  MATH  Google Scholar 

  8. De Bruin, T., Kober, J., Tuyls, K., Babuška, R.: The importance of experience replay database composition in deep reinforcement learning. In: Deep Reinforcement Learning Workshop, Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  9. Dietterich, T.G.: Robust artificial intelligence and robust human organizations. Front. Comput. Sci. 13(1), 1–3 (2019). https://doi.org/10.1007/s11704-018-8900-4

    Article  Google Scholar 

  10. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

    Article  Google Scholar 

  11. Goodfellow, I.J., Mirza, M., Da, X., Courville, A.C., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. CoRR abs/1312.6211 (2013). http://arxiv.org/abs/1312.6211

  12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  13. Lin, L.J.: Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8(3–4), 293–321 (1992)

    Google Scholar 

  14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  15. Liu, Q., et al.: A survey on deep reinforcement learning. Chin. J. Comput. 41(1), 1–27 (2018)

    Google Scholar 

  16. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  17. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy optimization. In: Proceedings of the 32nd International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  18. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/1707.06347

  19. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  20. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  22. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. (TOMS) 11(1), 37–57 (1985)

    Article  MathSciNet  Google Scholar 

  23. Zhang, L., et al.: A framework of dual replay buffer: balancing forgetting and generalization in reinforcement learning. In: Workshop on Scaling Up Reinforcement Learning (SURL), International Joint Conference on Artificial Intelligence (IJCAI) (2019)

    Google Scholar 

  24. Zhong, S., Liu, Q., Zhang, Z., Fu, Q.: Efficient reinforcement learning in continuous state and action spaces with Dyna and policy approximation. Front. Comput. Sci. 13(1), 106–126 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongzhang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Zhang, Z. (2020). Double Replay Buffers with Restricted Gradient. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics