Skip to main content

Importance of Mycorrhizae in Crop Productivity

  • Chapter
  • First Online:
Mitigating Environmental Stresses for Agricultural Sustainability in Egypt

Part of the book series: Springer Water ((SPWA))

Abstract

Arbuscular mycorrhizal fungi symbioses can pose a beneficial impact for sustaining agroecosystem functioning, for instance, improving plant nutrient uptake, plant growth under water deficit and crop productivity and quality. Arbuscular mycorrhizal fungi are known to receive photosynthetic carbon from the host plants; in return, they provide host plants with some nutrients. Organic fertilizers and related sources of nutrients, as well as slow-release mineral fertilizers, can inspire arbuscular mycorrhizal fungi activity in the rhizosphere, while many investigations revealed that most of the chemical fertilizers suppress the activity of mycorrhiza and their colonization with host plant roots. Arbuscular mycorrhizal fungi mainly play a vital role in plant phosphorus nutrition, and consequently, increase plant uptake of phosphorus. Moreover, arbuscular mycorrhizal fungi can play an important in the plant uptake for inorganic phosphate as well as some other immobile nutrients in the soil and moving them into the host plants. Thus, the main function of arbuscular mycorrhizal fungi is to supply colonized plant roots with phosphorus. Recently, some investigations reported that arbuscular mycorrhizal fungi could provide the host plants with nitrogen from organic sources via converting it into inorganic nitrogen. Also, arbuscular mycorrhizal fungi hyphae can directly take up ammonium, nitrate and amino acids from the rhizosphere and translocate them into their host plants in inorganic form. In the current chapter, the focus will include background about the arbuscular mycorrhizal fungi, the importance of arbuscular mycorrhizal fungi in plant nutrient and crop productivity under water deficit and salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aal SM, Ibrahim ME, Seleiman MF (2009) Effect of nitrogen fertilization on yield, technological and rheological characters of wheat (Triticum aestivum L.). Egypt J Agron 31:95–107

    Google Scholar 

  • Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza 8:41–45

    Article  Google Scholar 

  • Al-Karaki GN, Clark RB (1999) Mycorrhizal influence on protein and lipid of durum wheat grown at different soil phosphorus levels. Mycorrhiza 9:97–101

    Article  CAS  Google Scholar 

  • Al-Karaki GN, Ereifej KI (1998) Seed yield and chemical composition of durum wheat under arid and semiarid Mediterranean environments. In: Jaradat AA (ed) Triticeae III. Science, Enfield, NH, pp 439–444

    Google Scholar 

  • Al-Karaki GN, Hammad R (2001) Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. J Plant Nutr 24:1311–1323

    Article  CAS  Google Scholar 

  • Alloush GA, Clark RB (2001) Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal 32:231–254

    Article  CAS  Google Scholar 

  • Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil grown maize plants. Mycorrhiza 5:321–327

    Article  Google Scholar 

  • Azcón R, Ruiz-Lozano JM, Rodriguez R (2001) Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake of 15N under increasing N supply to the soil. Canad J Bot 79:1175–1180

    Article  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, AzcÏŒn R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and rhizobium improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalinrelated soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biolog Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Schreiner RB, Mihara KL (1997) Mycorrhizal fungi effects on nutrient composition and yield of soybean seeds. J Plant Nutr 20:581–591

    Article  CAS  Google Scholar 

  • Blanke V, Renker C, Wagner M, Füllner K, Held M, Kuhn AJ, Buscot F (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in phosphate-polluted field site. New Phytol 166:981–992

    Article  CAS  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations, a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell Environ 28:642–650

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Chalot M, Blaudez D, Annick B (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trend Plant Sci 11:263–266

    Article  CAS  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saud J Biolog Sci 24:170–179

    Article  CAS  Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bucking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Saud J Biolog Sci 109:2666–2671

    CAS  Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2010) Arbuscular mycorrhizal networks: process and functions. A review. Agron Sust Develop 30:581–599

    Article  CAS  Google Scholar 

  • Garg N, Geetanjali Kaur A (2006) Arbuscular mycorrhiza: Nutritional aspects. Arch Agron Soil Sci 52:593–606

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetic aspects of interactions between hosts and fungal synbionts in mycorrhizae. Genome 31:336–341

    Article  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  Google Scholar 

  • Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British Flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Helgason T, Fitter A (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exper Bot 60:2465–2480

    Article  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431

    Article  CAS  Google Scholar 

  • Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Res 2:220–246

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  Google Scholar 

  • Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) mycorrhiza. SpringerVerlag, Berlin, pp 297–324

    Chapter  Google Scholar 

  • Jemo M, Nolte C, Nwaga D (2007) Biomass production, N and P uptake of Mucuna after Bradyrhizobia and arbuscular mycorrhyzal fungi inoculation, and P application on acid soil of Southern Cameroon. In: Bationo A (ed) Advances in integrated soil fertility management in Sub-Saharan Africa: challenges and opportunities. Springer, Dordrecht, pp 855–864

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  Google Scholar 

  • Johansen A (1999) Depletion of soil mineral N by roots of Cucumis sativus L. colonized or not by arbuscular mycorrhizal fungi. Plant Soil 209:119–127

    Article  CAS  Google Scholar 

  • Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    Article  CAS  Google Scholar 

  • Joner EJ (2000) The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhiza-mediated phosphorus uptake in subterranean clover. Biol Fert Soils 32:435–440

    Article  Google Scholar 

  • Koide RT, Goff MD, Dickie IA (2000) Component growth efficiencies of mycorrhizal and nonmycorrhizal plants. New Phytol 148:163–168

    Article  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Sec 1:45–57

    Article  Google Scholar 

  • Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Network of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canad J Bot 82:1016–1045

    Article  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Liu ZL, Li YJ, Hou HY, Zhu XC, Rai V, He XY, Tian CJ (2013) Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side. Plant Physiol Biochem 71:87–95

    Article  CAS  Google Scholar 

  • Lu X, Koide RT (1991) Avena fatua L. seedling nutrient dynamics as influenced by mycorrhizal infection of the maternal generation. Plant, Cell Environ 14:931–939

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant-Microbe Interact 14:1140–1148

    Article  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2006) An indigenous drought tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microbial Ecol 52:670–678

    Article  CAS  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30:1639–1646

    Article  CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among the families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Ngwene B, Gabriel E, Eckhard G (2013) Influence of different mineral nitrogen sources (NH4+-N vs NO3−-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23:107–117

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    Article  Google Scholar 

  • Ohtomo R, Saito M (2005) Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. New Phytol 167:571–578

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa/CABI Publishing, Wallingford, UK

    Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    Article  CAS  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azon R, Gomez M (1995) Effects of arbuscular-mycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microbiol 61:456–460

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Azcon R, Gomez M (1996) Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants. Physiol Plant 98:767–772

    Article  CAS  Google Scholar 

  • Seleiman MF (2014) Towards sustainable intensification of feedstock production with nutrient cycling. PhD Thesis, University of Helsinki, Finland

    Google Scholar 

  • Seleiman MF, Abdel-Aal SM, Ibrahim ME, Monneveux P (2010a) Variation of yield and milling, technological and rheological characteristics in some Egyptian bread wheat (Triticum aestivum L.) cultivars. Emirat J Food Agric 22:84–90

    Article  Google Scholar 

  • Seleiman MF, Ibrahim ME, Abdel-Aal SM, Zahran GA (2010b) Effect of seeding rates on productivity, technological and rheological characteristics of bread wheat (Triticum aestivum L.). Inter J Curr Res 4:75–81

    Google Scholar 

  • Seleiman MF, Abdel-Aal S, Ibrahim M, Zahran G (2011) Productivity, grain and dough quality of bread wheat grown with different water regimes. J Agron Crop Sci 2:11–17

    Google Scholar 

  • Seleiman MF, Santanen A, Kleemola J, Stoddard FL (2013) Improved sustainability of feedstock production with sludge and interacting mycorrhiza. Chemosphere 91:1236–1242

    Article  CAS  Google Scholar 

  • Singh RP, Choudhary A, Gulati A, Dahiya HC, Jaiwal PK, Sengar RS (1997) Response of plants to salinity in interaction with other abiotic and factors. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Science Publishers, Enfield, NH, pp 25–39

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Elsevier, London, UK

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Ann Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants, integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  Google Scholar 

  • Solaiman MZ, Ezawa T, Kojima T, Saito M (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl Environ Microbiol 65:5604–5606

    Article  CAS  Google Scholar 

  • Staple RC, Toenniessen GH (1984) Salinity tolerance in plant: strategies for crop improvement. Wiley, New York

    Google Scholar 

  • Taffouo VD, Ngwene B, Akoa A, Franken P (2014) Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants. Mycorrhiza 24:361–368

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant Physiology. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Tawaraya K, Saito M (1994) Effect of vesicular-arbuscular mycorrhizal infection on amino acid composition in roots of onion and white clover. Soil Sci Plant Nutr 40:339–343

    Article  CAS  Google Scholar 

  • Tobar R, AzcÏŒn R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126:119–122

    Article  Google Scholar 

  • Vazquez MM, Barea JM, Azcón R (2001) Impact of soil nitrogen concentration on Glomus spp.-Sinorhizobium interactions as affecting growth, nitrate reductase activity and protein content of Medicago sativa. Biol Fert Soil 34:57–63

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Fathy Seleiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seleiman, M.F., Hardan, A.N. (2021). Importance of Mycorrhizae in Crop Productivity. In: Awaad, H., Abu-hashim, M., Negm, A. (eds) Mitigating Environmental Stresses for Agricultural Sustainability in Egypt. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-64323-2_17

Download citation

Publish with us

Policies and ethics