Skip to main content

CSC-GAN: Cycle and Semantic Consistency for Dataset Augmentation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12509))

Included in the following conference series:

Abstract

Image-to-image translation is a computer vision problem where a task learns a mapping from a source domain A to a target domain B using a training set. However, this translation is not always accurate, and during the translation process, relevant semantic information can deteriorate. To handle this problem, we propose a new cycle-consistent, adversarially trained image-to-image translation with a loss function that is constrained by semantic segmentation. This formulation encourages the model to preserve semantic information during the translation process. For this purpose, our loss function evaluates the accuracy of the synthetically generated image against a semantic segmentation model, previously trained. Reported results show that our proposed method can significantly increase the level of details in the synthetic images. We further demonstrate our method’s effectiveness by applying it as a dataset augmentation technique, for a minimal dataset, showing that it can improve the semantic segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adverdarial networks. Stat 1050, 8 (2018)

    Google Scholar 

  3. Bowles, C., et al.: GAN augmentation: augmenting training data using generative adversarial networks (2018)

    Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis (2018)

    Google Scholar 

  5. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation (2017)

    Google Scholar 

  6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)

    Google Scholar 

  7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  8. Donahue, J., Simonyan, K.: Large scale adversarial representation learning (2019)

    Google Scholar 

  9. Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., Shlens, J.: Exploring the structure of a real-time, arbitrary neural artistic stylization network. arXiv preprint arXiv:1705.06830 (2017)

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates, Inc. (2014)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778 (2016)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, pp. 6626–6637 (2017)

    Google Scholar 

  13. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998 (2018)

    Google Scholar 

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  15. Jackson, P.T., Abarghouei, A.A., Bonner, S., Breckon, T.P., Obara, B.: Style augmentation: data augmentation via style randomization. In: CVPR Workshops, pp. 83–92 (2019)

    Google Scholar 

  16. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks (2018)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017)

    Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  21. Lučić, M., Ritter, M., Tschannen, M., Zhai, X., Bachem, O.F., Gelly, S.: High-fidelity image generation with fewer labels. In: International Conference on Machine Learning (2019)

    Google Scholar 

  22. Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., Malossi, A.C.I.: BAGAN: data augmentation with balancing GAN. CoRR abs/1803.09655 (2018)

    Google Scholar 

  23. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  24. Radim Tyleček, R.Š.: Spatial pattern templates for recognition of objects with regular structure. In: Proceedings of GCPR, Saarbrucken, Germany (2013)

    Google Scholar 

  25. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  26. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  27. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  28. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. CoRR abs/1603.05631 (2016)

    Google Scholar 

  29. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Article  Google Scholar 

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato B. Arantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arantes, R.B., Vogiatzis, G., Faria, D.R. (2020). CSC-GAN: Cycle and Semantic Consistency for Dataset Augmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12509. Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64556-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64555-7

  • Online ISBN: 978-3-030-64556-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics