Skip to main content

Multi-kernel Covariance Terms in Multi-output Support Vector Machines

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

This paper proposes a novel way to learn multi-task kernel machines by combining the structure of classical Support Vector Machine (SVM) optimization problem with multi-task covariance functions developed in Gaussian process (GP) literature. Specifically, we propose a multi-task Support Vector Machine that can be trained on data with multiple target variables simultaneously, while taking into account the correlation structure between different outputs. In the proposed framework, the correlation structure between multiple tasks is captured by covariance functions constructed using a Fourier transform, which allows to represent both auto and cross-correlation structure between the outputs. We present a mathematical model and validate it experimentally on a rescaled version of the Jura dataset, a collection of samples representing the amount of seven chemical elements into several locations. The results demonstrate the utility of our modeling framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sites.google.com/site/goovaertspierre/.

References

  1. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 567–580. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_41

    Chapter  MATH  Google Scholar 

  2. Bielza, C., Li, G., Larranaga, P.: Multi-dimensional classification with Bayesian networks. Int. J. Approximate Reasoning 52(6), 705–727 (2011)

    Article  MathSciNet  Google Scholar 

  3. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdisci. Rev. Data Min. Knowl. Disc. 5(5), 216–233 (2015)

    Article  Google Scholar 

  4. Cai, F., Cherkassky, V.: Generalized SMO algorithm for SVM-based multitask learning. IEEE Trans. Neural Netw. Learn. Syst. 23(6), 997–1003 (2012)

    Article  Google Scholar 

  5. Cressie, N.: Statistics for spatial data. Terra Nova 4(5), 613–617 (1992)

    Article  Google Scholar 

  6. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117 (2004)

    Google Scholar 

  7. Melki, G., Cano, A., Kecman, V., Ventura, S.: Multi-target support vector regression via correlation regressor chains. Inf. Sci. 415, 53–69 (2017)

    Article  MathSciNet  Google Scholar 

  8. Melkumyan, A., Ramos, F.: Multi-kernel gaussian processes. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  9. Micchelli, C.A., Pontil, M.: Kernels for multi-task learning. In: Advances in neural Information Processing Systems, pp. 921–928 (2005)

    Google Scholar 

  10. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 45–64. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_3

    Chapter  Google Scholar 

  11. Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-05294-5

    Book  MATH  Google Scholar 

  12. Xu, D., Shi, Y., Tsang, I.W., Ong, Y.S., Gong, C., Shen, X.: Survey on multi-output learning. IEEE Trans. Neural Networks Learn. Syst. 31(7), 2409–2429 (2019)

    MathSciNet  Google Scholar 

  13. Xu, S., An, X., Qiao, X., Zhu, L.: Multi-task least-squares support vector machines. Multimedia Tools Appl. 71(2), 699–715 (2013). https://doi.org/10.1007/s11042-013-1526-5

    Article  Google Scholar 

  14. Zhang, J., He, Y., Tang, J.: Multi-view multi-task support vector machine. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10861, pp. 419–428. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93701-4_32

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Maruan Al-Shedivat for his precious advises and suggestions and Professor Eric Xing for his guidance while one of the authors was visiting the Machine Learning Department at Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Marcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcelli, E., De Leone, R. (2020). Multi-kernel Covariance Terms in Multi-output Support Vector Machines. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12566. Springer, Cham. https://doi.org/10.1007/978-3-030-64580-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64580-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64579-3

  • Online ISBN: 978-3-030-64580-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics