Skip to main content

Abstract

Phytochemicals are various compounds produced by plants. There is growing evidence on their potential health effects. Some of these compounds are considered as traditional medicines and used as painkillers, anti-inflammatory agents, and for other applications. One of these phytochemicals is curumin, a natural polyphenol derived from the turmeric plant (Curcuma longa L.). Curcumin is widely used as a food coloring, preservative and condiment. It has also been shown to have antioxidative and anti-inflammatory effects. Moreover, there is growing evidence that curcumin alters long noncoding RNAs (lncRNAs) in many kinds of cancer. These noncoding RNAs can cause epigenetic modulation in the expression of several genes. This study reviews reports of curcumin effects on lncRNAs in lung, prostate, colorectal, breast, pancreatic, renal, gastric, and ovarian cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang JY, Wu HY, Xia XK, Liang YJ, Yan YY, She ZG et al (2007) Anthracenedione derivative 1403P-3 induces apoptosis in KB and KBv200 cells via reactive oxygen species-independent mitochondrial pathway and death receptor pathway. Cancer Biol Ther 6(9):1409–1417

    Google Scholar 

  2. Jiang QW, Cheng KJ, Mei XL, Qiu JG, Zhang WJ, Xue YQ et al (2015) Synergistic anticancer effects of triptolide and celastrol, two main compounds from thunder god vine. Oncotarget 6(32):32790–32804

    PubMed  PubMed Central  Google Scholar 

  3. Zhang JY, Tao LY, Liang YJ, Yan YY, Dai CL, Xia XK et al (2009) Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G1 with involvement of GSK-3β/β-catenin/c-Myc pathway. Cell Cycle 8(15):2444–2450

    CAS  PubMed  Google Scholar 

  4. Shi Z, Li Z, Li Z, Cheng K, Du Y, Fu H et al (2015) Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3. Oncogene 34(19):2538–2545

    CAS  PubMed  Google Scholar 

  5. Zhang JY, Huang WJ, Sun HM, Liu Y, Zhao XQ, Tang SL et al (2017) Structure identification and in vitro anticancer activity of lathyrol-3-phenylacetate-5, 15-diacetate. Molecules 22(9):1412. https://doi.org/10.3390/molecules22091412

    Article  CAS  PubMed Central  Google Scholar 

  6. Shi Z, Peng X-X, Kim I-W, Shukla S, Si QS, Robey RW et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2–mediated drug resistance. Cancer Res 67(22):11012–11020

    CAS  PubMed  Google Scholar 

  7. Zhang J, Lai Z, Huang W, Ling H, Lin M, Tang S et al (2017) Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anti-Cancer Agent Me 17(10):1374–1382

    CAS  Google Scholar 

  8. Zhang JY, Mi YJ, Chen SP, Wang F, Liang YJ, Zheng LS et al (2011) Euphorbia factor L1 reverses ABCB1-mediated multidrug resistance involving interaction with ABCB1 independent of ABCB1 downregualtion. J Cell Biochem 112(4):1076–1083

    CAS  PubMed  Google Scholar 

  9. Baudino TA (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20

    CAS  PubMed  Google Scholar 

  10. Acheampong DO (2019) Bispecific antibody (bsAb) construct formats and their application in cancer therapy. Protein Pept Lett 26(7):479–493

    CAS  PubMed  Google Scholar 

  11. Limpert AS, Lambert LJ, Bakas NA, Bata N, Brun SN, Shaw RJ et al (2018) Autophagy in cancer: regulation by small molecules. Trends Pharmacol Sci 39(12):1021–1032

    CAS  PubMed  Google Scholar 

  12. Allahyari H, Heidari S, Ghamgosha M, Saffarian P, Amani J (2017) Immunotoxin: a new tool for cancer therapy. Tumour Biol 9(2):1010428317692226. https://doi.org/10.1177/1010428317692226

    Article  CAS  Google Scholar 

  13. Babazadeh A, Zeinali M, Hamishehkar H (2018) Nano-phytosome: a developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 19(2):170–180

    CAS  PubMed  Google Scholar 

  14. Tyagi N, Song YH, De R (2019) Recent progress on biocompatible nanocarrier-based genistein delivery systems in cancer therapy. J Drug Target 27(4):394–407

    CAS  PubMed  Google Scholar 

  15. Fazel M, Daeihamed M, Osouli M, Almasi A, Haeri A, Dadashzadeh S (2018) Preparation, in-vitro characterization and pharmacokinetic evaluation of Brij decorated doxorubicin liposomes as a potential nanocarrier for cancer therapy. Iran J Pharm Res 17(Suppl2):33–43

    CAS  PubMed  Google Scholar 

  16. Papamichael D, Glynne-Jones R (2018) Identifying patients who may benefit from oxaliplatin-containing perioperative chemo(radio)therapy for rectal cancer. Ann Oncol 29(8):1616–1618

    CAS  PubMed  Google Scholar 

  17. Vaz-Luis I, Partridge AH (2018) Exogenous reproductive hormone use in breast cancer survivors and previvors. Nat Rev Clin Oncol 15(4):249–261

    CAS  PubMed  Google Scholar 

  18. Stoll BA (1979) Endocrine therapy in cancer. Practitioner 222(1328):211–217

    CAS  PubMed  Google Scholar 

  19. Luo XM, Niu LZ, Chen JB, Xu KC (2016) Advances in cryoablation for pancreatic cancer. World J Gastroenterol 22(2):790–800

    CAS  PubMed  Google Scholar 

  20. Si T, Guo Z, Yang X, Zhang W, Xing W (2018) The oncologic results of cryoablation in prostate cancer patients with bone metastases. Int J Hyperth 34(7):1044–1048

    Google Scholar 

  21. Zhang JY, Lin MT, Tung HY, Tang SL, Yi T, Zhang Y-Z et al (2016) Bruceine D induces apoptosis in human chronic myeloid leukemia K562 cells via mitochondrial pathway. Am J Cancer Res 6(4):819–826

    CAS  PubMed  Google Scholar 

  22. McLoughlin NM, Mueller C, Grossmann TN (2018) The therapeutic potential of PTEN modulation: targeting strategies from gene to protein. Cell Chem Biol 25(1):19–29

    CAS  PubMed  Google Scholar 

  23. Liu T, Chi H, Chen J, Chen C, Huang Y, Xi H et al (2017) Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 631:29–38

    CAS  PubMed  Google Scholar 

  24. Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS et al (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8(4):1469–1481

    CAS  PubMed  Google Scholar 

  25. Tao YW, Lin YC, She ZG, Lin MT, Chen PX, Zhang JY (2015) Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anti-Cancer Agent Me 15(2):258–266

    CAS  Google Scholar 

  26. Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV et al (2013) Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 23(2):186–199

    CAS  PubMed  Google Scholar 

  27. Zhang JY, Lin MT, Zhou MJ, Yi T, Tang YN, Tang SL et al (2015) Combinational treatment of curcumin and quercetin against gastric cancer MGC-803 cells in vitro. Molecules 20(6):11524–11534

    CAS  PubMed  Google Scholar 

  28. Ghandadi M, Sahebkar A (2017) Curcumin: An effective inhibitor of interleukin-6. Curr Pharm Des 23(6):921–931

    Google Scholar 

  29. Mollazadeh H, Cicero AFG, Blesso CN, Pirro M, Majeed M, Sahebkar A (2019) Immune modulation by curcumin: the role of interleukin-10. Crit Rev Food Sci Nutr 59(1):89–101

    CAS  PubMed  Google Scholar 

  30. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A (2018) Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 233(1):141–152

    Google Scholar 

  31. Momtazi AA, Derosa G, Maffioli P, Banach M, Sahebkar A (2016) Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol Diagn Ther 20(4):335–345

    CAS  PubMed  Google Scholar 

  32. Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H (2010) Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 17(3–4):269–273

    CAS  PubMed  Google Scholar 

  33. Teymouri M, Pirro M, Johnston TP, Sahebkar A (2017) Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors 43(3):331–346

    Google Scholar 

  34. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. Phytother Res 32(6):985–995

    Google Scholar 

  35. Hassanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar, A (2020) Curcumin: an inflammasome silencer. Pharmacol Res 159:104921. https://doi.org/10.1016/j.phrs.2020.104921

  36. Lim YS, Kwon SK, Park JH, Cho CG, Park SW, Kim WK (2016) Enhanced mucosal healing with curcumin in animal oral ulcer model. Laryngoscope 126(2):E68–E73

    CAS  PubMed  Google Scholar 

  37. Chin KY (2016) The spice for joint inflammation: anti-inflammatory role of curcumin in treating osteoarthritis. Drug Des Devel Ther 10:3029–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sadeghian M, Rahmani S, Jamialahmadi T, Johnston TP, Sahebkar A (2021) The effect of oral curcumin supplementation on health-related quality of life: A systematic review and meta-analysis of randomized controlled trials. J Affect Disord 278:627–636. https://doi.org/10.1016/j.jad.2020.09.091

  39. Ding XQ, Wu WY, Jiao RQ, Gu TT, Xu Q, Pan Y et al (2018) Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res 137:64–75

    CAS  PubMed  Google Scholar 

  40. Saberi-Karimian M, Keshvari M, Ghayour-Mobarhan M, Salehizadeh L, Rahmani S, Behnam B, et al (2020) Effects of curcuminoids on inflammatory status in patients with non-alcoholic fatty liver disease: A randomized controlled trial (2020) Complement Ther Med 49:102322. https://doi.org/10.1016/j.phrs.2020.104921

  41. Sahebkar A, Serban MC, Ursoniu S, Banach M (2015) Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Funct Foods 18:898–909

    CAS  Google Scholar 

  42. He W, Yuan K, Ji B, Han Y, Li J (2020) Protective effects of curcumin against neuroinflammation induced by Aβ25-35 in primary rat microglia: modulation of high-mobility group box 1, toll-like receptor 4 and receptor for advanced glycation end products expression. Ann Transl Med 8(4):88. https://doi.org/10.21037/atm.2019.12.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kanchanatawan B, Tangwongchai S, Sughondhabhirom A, Suppapitiporn S, Hemrunrojn S, Carvalho AF et al (2018) Add-on treatment with curcumin has antidepressive effects in Thai patients with major depression: results of a randomized double-blind placebo-controlled study. Neurotox Res 33(3):621–633

    CAS  PubMed  Google Scholar 

  44. Sordillo PP, Helson L (2015) Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo 29(1):1–4

    CAS  PubMed  Google Scholar 

  45. Den Hartogh DJ, Gabriel A, Tsiani E (2020) Antidiabetic properties of curcumin I: evidence from in vitro studies. Nutrients 12(1):118. https://doi.org/10.3390/nu12010118

    Article  CAS  Google Scholar 

  46. Seyed Hosseini E, Alizadeh Zarei M, Babashah S, Nakhaei Sistani R, Sadeghizadeh M, Haddad Kashani H et al (2019) Studies on combination of oxaliplatin and dendrosomal nanocurcumin on proliferation, apoptosis induction, and long non-coding RNA expression in ovarian cancer cells. Cell Biol Toxicol 35(3):247–266

    PubMed  Google Scholar 

  47. Saghafi T, Taheri RA, Parkkila S, Emameh RZ (2019) Phytochemicals as modulators of long non-coding RNAs and inhibitors of cancer-related carbonic anhydrases. Int J Mol Sci 20(12):2939. https://doi.org/10.3390/ijms20122939

    Article  CAS  PubMed Central  Google Scholar 

  48. Castro-Oropeza R, Melendez-Zajgla J, Maldonado V, Vazquez-Santillan K (2018) The emerging role of lncRNAs in the regulation of cancer stem cells. Cell Oncol 41(6):585–603

    Google Scholar 

  49. Bian EB, Xiong ZG, Li J (2019) New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA–miRNA interactions. J Cell Physiol 234(3):2194–2203

    CAS  PubMed  Google Scholar 

  50. Peng WX, Koirala P, Mo YY (2017) LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41):5661–5667

    CAS  PubMed  Google Scholar 

  51. Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochim Biophys Acta 1839(11):1097–1109

    CAS  PubMed  Google Scholar 

  52. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641

    CAS  PubMed  Google Scholar 

  53. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K et al (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939. https://doi.org/10.1038/ncomms3939

    Article  CAS  PubMed  Google Scholar 

  54. Han P, Chang CP (2015) Long non-coding RNA and chromatin remodeling. RNA Biol 12(10):1094–1098

    PubMed  Google Scholar 

  55. Zhang L, Peng D, Sood AK, Dang CV, Zhong X (2018) Shedding light on the dark cancer genomes: long noncoding RNAs as novel biomarkers and potential therapeutic targets for cancer. Mol Cancer Ther 17(9):1816–1823

    CAS  PubMed  Google Scholar 

  56. Campos-Parra AD, López-Urrutia E, Orozco Moreno LT, López-Camarillo C, Meza-Menchaca T, Figueroa González G et al (2018) Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci 19(9):2711. https://doi.org/10.3390/ijms19092711

    Article  CAS  Google Scholar 

  57. Alvarez-Dominguez JR, Lodish HF (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130(18):1965–1975

    CAS  PubMed  Google Scholar 

  58. Du XH, Wei H, Qu GX, Tian ZC, Yao WT, Cai QQ (2020) Gene expression regulations by long noncoding RNAs and their roles in cancer. Pathol Res Pract 216:152983. https://doi.org/10.1016/j.prp.2020.152983. Online ahead of print

    Article  CAS  PubMed  Google Scholar 

  59. Renganathan A, Felley-Bosco E (2017) Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol 1008:199–222

    CAS  PubMed  Google Scholar 

  60. Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S (2018) The network of non-coding RNAs in cancer drug resistance. Front Oncol 8:327. https://doi.org/10.3389/fonc.2018.00327

    Article  PubMed  Google Scholar 

  61. Cao MX, Jiang YP, Tang YL, Liang XH (2017) The crosstalk between lncRNA and microRNA in cancer metastasis: orchestrating the epithelial-mesenchymal plasticity. Oncotarget 8(7):12472–12483

    PubMed  Google Scholar 

  62. Cao H, Yu H, Feng Y, Chen L, Liang F (2017) Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis. Cancer Chemother Pharmacol 79(5):985–994

    CAS  PubMed  Google Scholar 

  63. Ye Y, Li SL, Wang SY (2018) Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer. PLoS One 13(8):e0198055. https://doi.org/10.1371/journal.pone.0198055

    Article  CAS  PubMed  Google Scholar 

  64. Peng Z, Zhang C, Duan C (2016) Functions and mechanisms of long noncoding RNAs in lung cancer. Onco Targets Ther 9:4411–4424

    CAS  PubMed  Google Scholar 

  65. Luo J, Qu J, Wu DK, Lu ZL, Sun YS, Qu Q (2017) Long non-coding RNAs: a rising biotarget in colorectal cancer. Oncotarget 8(13):22187–22202

    PubMed  Google Scholar 

  66. Li H, Ma SQ, Huang J, Chen XP, Zhou HH (2017) Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget 8(24):39859–39876

    PubMed  Google Scholar 

  67. Chen T, Yang P, Wang H, He ZY (2017) Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells. Onco Targets Ther 10:483–491

    CAS  PubMed  Google Scholar 

  68. Yu H, Xie Y, Zhou Z, Wu Z, Dai X, Xu B (2019) Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway. Technol Cancer Res Treat 18:1533033819870781. https://doi.org/10.1177/1533033819870781

    Article  CAS  PubMed  Google Scholar 

  69. Yoshida K, Toden S, Ravindranathan P, Han H, Goel A (2017) Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis 38(10):1036–1046

    CAS  PubMed  Google Scholar 

  70. Duguang L, Jin H, Xiaowei Q, Peng X, Xiaodong W, Zhennan L et al (2017) The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biol Ther 18(12):927–936

    PubMed  PubMed Central  Google Scholar 

  71. Huang X, Zhi X, Gao Y, Ta N, Jiang H, Zheng J (2016) LncRNAs in pancreatic cancer. Oncotarget 7(35):57379–57390

    PubMed  PubMed Central  Google Scholar 

  72. Wang WH, Chen J, Zhang BR, Lu SJ, Wang F, Peng L et al (2018) Curcumin inhibits proliferation and enhances apoptosis in A549 cells by downregulating lncRNA UCA1. Pharmazie 73(7):402–407

    CAS  PubMed  Google Scholar 

  73. Wei MM, Zhou GB (2016) Long non-coding RNAs and their roles in non-small-cell lung cancer. Genom Proteom Bioinf 14(5):280–288

    Google Scholar 

  74. Li MY, Tang XH, Fu Y, Wang TJ, Zhu JM (2019) Regulatory mechanisms and clinical applications of the long non-coding RNA PVT1 in cancer treatment. Front Oncol 9:787. https://doi.org/10.3389/fonc.2019.00787

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang Z, Li H, Li J, Lv X, Yang Z, Gao M et al (2020) Polymorphisms in the PVT1 gene and Susceptibility to the lung cancer in a Chinese northeast population: a case-control study. J Cancer 11(2):468–478

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang J, Ye C, Xiong H, Shen Y, Lu Y, Zhou J et al (2017) Dysregulation of long non-coding RNA in breast cancer: an overview of mechanism and clinical implication. Oncotarget 8(3):5508–5522

    PubMed  Google Scholar 

  77. Esmatabadi MJD, Motamedrad M, Sadeghizadeh M (2018) Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine 42:56–65

    CAS  PubMed  Google Scholar 

  78. Rathinasamy B, Velmurugan BK (2018) Role of lncRNAs in the cancer development and progression and their regulation by various phytochemicals. Biomed Pharmacother 102:242–248

    CAS  PubMed  Google Scholar 

  79. Nikpayam E, Tasharrofi B, Sarrafzadeh S, Ghafouri-Fard S (2017) The role of long non-coding RNAs in ovarian cancer. Iran Biomed J 21(1):3–15

    PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Liu J, Xu X, Li L (2017) Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 79(3):479–487

    CAS  PubMed  Google Scholar 

  81. Misawa A, Ki T, Inoue S (2017) Long non-coding RNAs and prostate cancer. Cancer Sci 108(11):2107–2114

    CAS  PubMed  Google Scholar 

  82. Mitobe Y, K-i T, Horie-Inoue K, Inoue S (2018) Prostate cancer-associated lncRNAs. Cancer Lett 418:159–166

    CAS  PubMed  Google Scholar 

  83. Liu Y, Sun H, Makabel B, Cui Q, Li J, Su C et al (2019) The targeting of noncoding RNAs by curcumin: facts and hopes for cancer therapy (review). Oncol Rep 42(1):20–34

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Xiao-ai L, Bei W, Xiao-hong X, Lei P, Bin W, Xiao-xue D et al (2017) Curcumin re-sensitizes multidrug resistant (MDR) breast cancer to cisplatin through inducing autophagy by decreasing CCAT1 expression. RSC Adv 7(53):33572–33579

    Google Scholar 

  85. Li X, Han X, Wei P, Yang J, Sun J (2020) Knockdown of lncRNA CCAT1 enhances sensitivity of paclitaxel in prostate cancer via regulating miR-24-3p and FSCN1. Cancer Biol Ther 21(5):452–462

    PubMed  PubMed Central  Google Scholar 

  86. Pei CS, Wu HY, Fan FT, Wu Y, Shen CS, Pan LQ (2014) Influence of curcumin on HOTAIR-mediated migration of human renal cell carcinoma cells. Asian Pac J Cancer Prev 15(10):4239–4243

    PubMed  Google Scholar 

  87. Sun K, Jia Z, Duan R, Yan Z, Jin Z, Yan L et al (2019) Long non-coding RNA XIST regulates miR-106b-5p/P21 axis to suppress tumor progression in renal cell carcinoma. Biochem Biophys Res Commun 510(3):416–420

    CAS  PubMed  Google Scholar 

  88. Zamani M, Sadeghizadeh M, Behmanesh M, Najafi F (2015) Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer. Phytomedicine 22(10):961–967

    CAS  PubMed  Google Scholar 

  89. Liu G, Xiang T, Wu QF, Wang WX (2016) Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol Lett 12(6):5156–5162

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang QR, Fan HN, Yin ZX, Cai HB, Shao M, Diao JX, Liu YL, Sun XG, Tong L, Fan Q (2014) Effect of curcumin on radiosensitization of CNE-2 cells and its mechanism. Zhongguo Zhongyao Zazhi 39(3):507–510

    CAS  PubMed  Google Scholar 

  91. Wang Q, Fan H, Liu Y, Yin Z, Cai H, Liu J, Wang Z, Shao M, Sun X, Diao J (2014) Curcumin enhances the radiosensitivity in nasopharyngeal carcinoma cells involving the reversal of diferentially expressed long non-coding RNAs. Int J Oncol 44(3):858–864

    CAS  PubMed  Google Scholar 

Download references

Competing Interests

Muhammed Majeed is the founder of Sabinsa Corporation and Sami Labs Ltd. The authors have no other conflicting interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amini, A. et al. (2021). Role of Curcumin in Regulating Long Noncoding RNA Expression in Cancer. In: Barreto, G.E., Sahebkar, A. (eds) Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Advances in Experimental Medicine and Biology, vol 1308. Springer, Cham. https://doi.org/10.1007/978-3-030-64872-5_2

Download citation

Publish with us

Policies and ethics