Skip to main content

X-Ray and Neutron Radiographic Experiments on Particle-Laden Molten Metal Flows

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2021

Abstract

In metallurgical processing, non-metallic inclusions contaminating metallic materials are one highly relevant challenge. Bubble injection into molten metals boosts the inclusion control and removal, thus enhancing metal homogenisation and purification. Although this principle of bubble flotation has been used for a long time, the effects of bubble–inclusion interactions in molten metals are not yet well researched. Imaging measurements of multiphase metal flows are challenging for two main reasons: the metals’ high melting temperatures and their opaqueness for visible light. This work focuses on X-ray and neutron radiographic experiments employing low-melting gallium alloys laden with model particles smaller than 1 mm in diameter. Both, bubbles and particles, are visualised simultaneously with high spatial and temporal resolution in order to analyse their motions by tracking algorithms. We demonstrate the capability of time-resolved X-ray and neutron radiography to image multiphase flows in particle-laden and optically opaque liquid metals, thus contributing to pave the way for systematic investigations on bubble–inclusion interactions in molten metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simensen CJ, Berg G (1980) A survey of inclusions in aluminum. Aluminium 56:335–340

    CAS  Google Scholar 

  2. Zhang L, Thomas BG (2003) State of the art in evaluation and control of steel cleanliness. ISIJ Int 43:271–291

    Article  CAS  Google Scholar 

  3. Zhang L, Taniguchi S (2000) Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev 45:59–82

    Article  CAS  Google Scholar 

  4. Sommer A-E et al (2018) A novel method for measuring flotation recovery by means of 4D particle tracking velocimetry. Miner Eng 124:116–122

    Article  CAS  Google Scholar 

  5. Sommer A-E et al (2020) Application of Positron Emission Particle Tracking (PEPT) to measure the bubble-particle interaction in a turbulent and dense flow. Miner Eng 156:106410

    Article  CAS  Google Scholar 

  6. May R et al (2018) Impact of particle boundary conditions on the collision rates of inclusions around a single bubble rising in liquid metal. PAMM 18:1–2

    Article  Google Scholar 

  7. Gisselbrecht M et al (2019) Aggregation kernel of globular inclusions in local shear flow: application to aggregation in a gas-stirred ladle. Metall Res Technol 116:512

    Article  CAS  Google Scholar 

  8. Bellot J-P et al (2018) Toward better control of inclusion cleanliness in a gas stirred ladle using multiscale numerical modeling. Materials 11:1179

    Article  Google Scholar 

  9. Kroll-Rabotin J-S et al (2020) Multiscale simulation of non-metallic inclusion aggregation in a fully resolved bubble swarm in liquid steel. Metals 10:517

    Article  CAS  Google Scholar 

  10. Lide DR, Bruno TJ (2019) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  11. Plevachuk Y et al (2014) Thermophysical properties of the liquid GaInSn eutectic alloy. J Chem Eng Data 59:757–763

    Article  CAS  Google Scholar 

  12. Brandes EA, Brook GB (1999) Smithells metals reference book. Butterworth-Heinemann, Oxford

    Google Scholar 

  13. Iida T, Guthrie RIL (2015) The thermophysical properties of metallic liquids. Oxford University Press

    Google Scholar 

  14. Warlimont H, Martienssen W (eds) (2018) Springer handbook of materials data. Springer International Publishing, Cham

    Google Scholar 

  15. Keplinger O et al (2017) Validation of X-ray radiography for characterization of gas bubbles in liquid metals. IOP Conf Ser Mater Sci Eng 228:012009

    Article  Google Scholar 

  16. Keplinger O et al (2018) Visualization of bubble coalescence in bubble chains rising in a liquid metal. Int J Multiph Flow 105:159–169

    Article  CAS  Google Scholar 

  17. Keplinger O et al (2019a) Experimental investigation of bubble breakup in bubble chains rising in a liquid metal. Int J Multiph Flow 116:39–50

    Article  CAS  Google Scholar 

  18. Keplinger O et al (2019b) Experimental investigations of bubble chains in a liquid metal under the influence of a horizontal magnetic field. Int J Multiph Flow 121:103111

    Article  CAS  Google Scholar 

  19. Akashi M et al (2020) X-ray radioscopic visualization of bubbly flows injected through a top submerged lance into a liquid metal. Metall Mater Trans B 51:124–139

    Article  CAS  Google Scholar 

  20. Takenaka N et al (1994) Visualization of streak lines in liquid metal by neutron radiography. Nondestruct Test Eval 11:107–113

    Article  Google Scholar 

  21. Takenaka N et al (1996) Liquid metal flow measurement by neutron radiography. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 377:156–160

    Article  CAS  Google Scholar 

  22. Saito Y et al (2004) Velocity field measurement in gas-liquid metal two-phase flow with use of PIV and neutron radiography techniques. Appl Radiat Isot 61:683–691

    Article  CAS  Google Scholar 

  23. Baake E et al (2017) Neutron radiography for visualization of liquid metal processes: bubbly flow for CO2 free production of hydrogen and solidification processes in EM field. IOP Conf Ser Mater Sci Eng 228:012026

    Article  Google Scholar 

  24. Birjukovs M et al (2020) Argon bubble flow in liquid gallium in external magnetic field. Int J Appl Electromagn Mech 1–7

    Google Scholar 

  25. Birjukovs M et al (2020) Phase boundary dynamics of bubble flow in a thick liquid metal layer under an applied magnetic field. Phys Rev Fluids 5:061601

    Article  Google Scholar 

  26. Scepanskis M et al (2015) A report on the first neutron radiography experiment for dynamic visualization of solid particles in an intense liquid metal flow. Magnetohydrodynamics 51:257–265

    Article  Google Scholar 

  27. Sarma M et al (2015) Neutron radiography visualization of solid particles in stirring liquid metal. Phys Procedia 69:457–463

    Article  CAS  Google Scholar 

  28. Scepanskis M et al (2017) Assessment of electromagnetic stirrer agitated liquid metal flows by dynamic neutron radiography. Metall Mater Trans B 48:1045–1054

    Article  CAS  Google Scholar 

  29. Baranovskis R et al (2020) Investigation of particle dynamics and solidification in a two-phase system by neutron radiography. Magnetohydrodynamics 56:43–50

    Article  Google Scholar 

  30. Heitkam S et al (2018) Neutron imaging of froth structure and particle motion. Miner Eng 119:126–129

    Article  CAS  Google Scholar 

  31. Heitkam S et al (2019) Tracking of particles in froth using neutron imaging. Chem Ing Technol 91:1001–1007

    Article  CAS  Google Scholar 

  32. Lappan T et al (2020a) X-ray particle tracking velocimetry in liquid foam flow. Soft Matter 16:2093–2103

    Article  CAS  Google Scholar 

  33. Anderson TJ, Ansara I (1992) The Ga-Sn (gallium-tin) system. J Phase Equilibria 13:181–189

    Article  CAS  Google Scholar 

  34. Clift R et al (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  35. Birjukovs M et al (2021) X-ray imaging of bubble flow in liquid metal: shape dynamics under confinement. Accepted for 25 th international congress of theoretical and applied mechanics, Milano

    Google Scholar 

  36. Lappan T et al (2020b) Neutron radiography of particle-laden liquid metal flow driven by an electromagnetic induction pump. Magnetohydrodynamics 56:81–90

    Article  Google Scholar 

  37. Nguyen AV, Schulze HJ (2004) Colloidal science of flotation. New York

    Google Scholar 

  38. Lehmann EH et al (2001) Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestruct Test Eval 16:191–202

    Article  Google Scholar 

  39. Kaestner AP et al (2011) The ICON beamline—a facility for cold neutron imaging at SINQ. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 659:387–393

    Article  CAS  Google Scholar 

  40. Blau B et al (2009) The Swiss spallation neutron source SINQ at Paul Scherrer Institut. Neutron News 20:5–8

    Article  CAS  Google Scholar 

  41. Auger JM et al (2019a) Preparation of alumina particle suspension in liquid tin using a pre-coating process. Metall Res Technol 116:510

    Article  CAS  Google Scholar 

  42. Auger JM et al (2019b) Wettability-enabling coating on oxide particles through controlled milling. Powder Technol 344:302–306

    Article  CAS  Google Scholar 

  43. Tang L et al (1992) Self-organizing particle dispersion mechanism in a plane wake. Phys Fluids Fluid Dyn 4:2244–2251

    Article  CAS  Google Scholar 

  44. Andersen KH et al (2020) The instrument suite of the European Spallation Source. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 957:163402

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by the Agence Nationale de la Recherche (ANR) and the Deutsche Forschungsgemeinschaft (DFG) within the collaborative French-German research project FLOTINC under grant number ANR-15-CE08-0040 and EC 217/3-1. The experiments on neutron radiography were performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institut, Villigen, Switzerland. We thank Sylvain Martin (École des Mines de Saint-Étienne, France) for his valuable support with particle coating tests. Special thanks are due to Michaela Roßner, Peggy Jähnigen, and Michael Knobel for their excellent technical assistance with particle characterisations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Lappan or Sven Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lappan, T. et al. (2021). X-Ray and Neutron Radiographic Experiments on Particle-Laden Molten Metal Flows. In: Lee, J., Wagstaff, S., Anderson, A., Tesfaye, F., Lambotte, G., Allanore, A. (eds) Materials Processing Fundamentals 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65253-1_2

Download citation

Publish with us

Policies and ethics