Skip to main content

High Throughput Secure MPC over Small Population in Hybrid Networks (Extended Abstract)

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2020 (INDOCRYPT 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12578))

Included in the following conference series:

  • 725 Accesses

Abstract

We study secure multi-party computation (MPC) among small number of parties, in partially synchronous and completely asynchronous settings. Prior works have only considered the synchronous setting. The setting considered in this paper is that of \(n=4\) parties with \(t=1\) corruption. In this setting, we present the following results.

  • \(\bullet \) A perfectly-secure protocol in the partially synchronous setting with 2 synchronous rounds. Our protocol simultaneously enjoys the properties of optimal resilience and optimal number of synchronous rounds and it partially answers one of the open problems of Patra and Ravi (IEEE Transactions on Information Theory, 2018).

  • \(\bullet \) A cryptographically-secure protocol in the partially synchronous setting with 1 initial synchronous round. Our protocol has optimal resilience and optimal number of synchronous rounds. The previous such protocol (Beerliová, Hirt and Nielsen, PODC 2010) requires expensive public-key machinery and associated zero-knowledge (ZK) proofs and it was left as an open problem to reduce the cryptographic setups of their protocol. Our protocol makes inroads into solving this problem, where we deploy only standard symmetric-key gadgets and completely shun ZK proofs. Our protocol also improves upon the protocol of Beerliová et al, in terms of communication complexity.

  • \(\bullet \) A cryptographically-secure protocol in the asynchronous setting, relying only on symmetric-key primitives. It improves upon the previous best protocols (Choudhury et al, ICDCN 2015 and Cohen, PKC 2016), which deploy expensive public-key tools and ZK protocols.

A. Choudhury—This research is an outcome of the R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Araki, T., et al.: Optimized honest-majority MPC for Malicious adversaries - breaking the 1 billion-gate per second barrier. In: Symposium on Security and Privacy, pp. 843–862. IEEE Computer Society (2017)

    Google Scholar 

  2. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: CCS, pp. 805–817. ACM (2016)

    Google Scholar 

  3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513. ACM (1990)

    Google Scholar 

  5. Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_23

    Chapter  Google Scholar 

  6. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_13

    Chapter  Google Scholar 

  7. Beerliová-Trubíniová, Z., Hirt, M., Nielsen, J.B.: On the theoretical gap between synchronous and asynchronous MPC protocols. In: PODC, pp. 211–218. ACM (2010)

    Google Scholar 

  8. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61. ACM (1993)

    Google Scholar 

  9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM (1988)

    Google Scholar 

  10. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience (extended abstract). In: PODC, pp. 183–192. ACM (1994)

    Google Scholar 

  11. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  12. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32946-3_5

    Chapter  Google Scholar 

  13. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  14. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party computation via sublinear distributed zero-knowledge proofs. In: CCS, pp. 869–886. ACM (2019)

    Google Scholar 

  15. Bracha, G.: An ssynchronous [(n-1)/3]-resilient consensus protocol. In: PODC, pp. 154–162. ACM (1984)

    Google Scholar 

  16. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: FLASH: fast and robust framework for privacy-preserving machine learning. IACR Cryptol. ePrint Archive 2019, 1365 (2019)

    Google Scholar 

  17. Byali, M., Hazay, C., Patra, A., Singla, S.: Fast actively secure five-party computation with security beyond abort. In: CCS, pp. 1573–1590. ACM (2019)

    Google Scholar 

  18. Byali, M., Joseph, A., Patra, A., Ravi, D.: Fast secure computation for small population over the internet. In: CCS, pp. 677–694. ACM (2018)

    Google Scholar 

  19. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: SRDS, pp. 191–202. IEEE Computer Society (2005)

    Google Scholar 

  20. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  21. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)

    Article  MathSciNet  Google Scholar 

  22. Chandran, N., Garay, J.A., Mohassel, P., Vusirikala, S.: Efficient, constant-round and actively secure MPC: beyond the three-party case. In: CCS, pp. 277–294. ACM (2017)

    Google Scholar 

  23. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: programmable and efficient secure two-party computation for machine learning. In: European Symposium on Security and Privacy, pp. 496–511. IEEE (2019)

    Google Scholar 

  24. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: ASTRA: high throughput 3PC over rings with application to secure prediction. In: CCSW@CCS, pp. 81–92. ACM (2019)

    Google Scholar 

  25. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2

    Chapter  Google Scholar 

  26. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_12

    Chapter  Google Scholar 

  27. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear communication complexity. In: ICDCN, pp. 5:1–5:10. ACM (2015)

    Google Scholar 

  28. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure multiparty computation. IEEE Trans. Inf. Theory 63(1), 428–468 (2017)

    Article  MathSciNet  Google Scholar 

  29. Cohen, R.: Asynchronous secure multiparty computation in constant time. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_8

    Chapter  Google Scholar 

  30. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure multiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_25

    Chapter  MATH  Google Scholar 

  31. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_33

    Chapter  Google Scholar 

  32. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_10

    Chapter  Google Scholar 

  33. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  34. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  35. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_26

    Chapter  Google Scholar 

  36. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  37. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_6

    Chapter  MATH  Google Scholar 

  38. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_19

    Chapter  Google Scholar 

  39. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with quadratic communication. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 473–485. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_39

    Chapter  Google Scholar 

  40. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure computation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_18

    Chapter  Google Scholar 

  41. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: CCS, pp. 525–537. ACM (2018)

    Google Scholar 

  42. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, 2nd edn. CRC Press, United States (2014)

    Book  Google Scholar 

  43. LeCun, Y., Cortes, C., Burges, C.J.: Mnist handwritten digit database. ATT Labs. http://yann.lecun.com/exdb/mnist, February 2010

  44. Lindell, Y.: Secure Multiparty Computation (MPC). Cryptology ePrint Archive, Report 2020/300 (2020)

    Google Scholar 

  45. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.K.: HoneyBadgerMPC and AsynchroMix: practical asynchronous MPC and its application to anonymous communication. In: CCS, pp. 887–903. ACM (2019)

    Google Scholar 

  46. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In: CCS, pp. 31–42. ACM (2016)

    Google Scholar 

  47. Mohassel, P., Rindal, P.: ABY\({}^{\text{3}}\): a mixed protocol framework for machine learning. In: CCS, pp. 35–52. ACM (2018)

    Google Scholar 

  48. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: the garbled circuit approach. In: CCS, pp. 591–602. ACM (2015)

    Google Scholar 

  49. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: Symposium on Security and Privacy, pp. 19–38. IEEE Computer Society (2017)

    Google Scholar 

  50. Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable secret sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2015)

    Article  MathSciNet  Google Scholar 

  51. Patra, A., Ravi, D.: On the power of hybrid networks in multi-party computation. IEEE Trans. Inf. Theory 64(6), 4207–4227 (2018)

    Article  MathSciNet  Google Scholar 

  52. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning. IACR Cryptol. ePrint Archive 2020, 42 (2020)

    Google Scholar 

  53. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85. ACM (1989)

    Google Scholar 

  54. Rachuri, R., Suresh, A.: Trident: efficient 4PC framework for privacy preserving machine learning. IACR Cryptol. ePrint Archive 2019, 1315 (2019)

    Google Scholar 

  55. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  56. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.9) (2020). https://www.sagemath.org

  57. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network training. PoPETs 2019(3), 26–49 (2019)

    Google Scholar 

  58. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE Computer Society (1982)

    Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous reviewers of INDOCRYPT 2020 for several helpful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhury, A., Hegde, A. (2020). High Throughput Secure MPC over Small Population in Hybrid Networks (Extended Abstract). In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds) Progress in Cryptology – INDOCRYPT 2020. INDOCRYPT 2020. Lecture Notes in Computer Science(), vol 12578. Springer, Cham. https://doi.org/10.1007/978-3-030-65277-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65277-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65276-0

  • Online ISBN: 978-3-030-65277-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics