Skip to main content

The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan

  • Chapter
  • First Online:
The Extraordinary Biology of the Naked Mole-Rat

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1319))

Abstract

The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to “idle on low” with their “shields up” as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2–5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.

figure a

Thirty seven year-old naked mole-rat (Photo Credit: Ben Passarelli)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ar A (1987) Physiological adaptationsto underground life; a case of mammalian neoteny? In: Dejours P (ed) Comparative Physiology of Environmental Adaptations. Karger, Strasbourg, pp 208–221

    Google Scholar 

  • Arieli R, Ar A (1979) Ventilation of a fossorial mammal (Spalax ehrenbergi) in hypoxic and hypercapnic conditions. J Appl Physiol 47:1011–1017

    Google Scholar 

  • Bartke A, Brown-Borg H, Mattison J, Kinney B, Hauck S, Wright C (2001a) Prolonged longevity of hypopituitary dwarf mice. Exp Gerontol 36:21–28

    Article  CAS  PubMed  Google Scholar 

  • Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001b) Extending the lifespan of long-lived mice. Nature 414:412

    Article  CAS  PubMed  Google Scholar 

  • Bennett NC, Jarvis JUM, Cotterill FPD (1993) Poikilothermic traits and thermoregulation in the Afrotropical social subterranean Mashona mole-rat, Cryptomys hottentotus darlingi (Rodentia: Bathyergidae). J Zool (Lond) 231:179–186

    Google Scholar 

  • Bennett NC, Clarke BC, Jarvis JUM (1992) A comparison of metabolic acclimation in two species of social mole-rats (Rodentia, Bathyergidae) in southern Africa. J Arid Environ 23(2):189–198

    Google Scholar 

  • Bennett NC, Aguilar GH, Jarvis JUM, Faulkes CG (1994) Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia 97(2):222–227

    Google Scholar 

  • Beuchat CA (1990) Body size, medullary thickness, and urine concentrating ability in mammals. Am J Phys Regul Integr Comp Phys 258:R298–R308

    CAS  Google Scholar 

  • Bishop WW (1962) The mammalian fauna and geomorphological relations of the Napak volcanics, Karamoja. Uganda Geological Survey Records 1957:1–18

    Google Scholar 

  • Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Google Scholar 

  • Boggs DF, Kilgore DL Jr, Birchard GF (1984) Respiratory physiology of burrowing mammals and birds. Comp Biochem Physiol A Physiol 77:1–7

    Article  Google Scholar 

  • Bose S, French S, Evans FJ, Joubert F, Balaban RS (2003) Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate. J Biol Chem 278:39155–39165

    Google Scholar 

  • Braude S (2000) Dispersal and new colony formation in wild naked mole-rats: evidence against inbreeding as the system of mating. Behav Ecol 11:7–12

    Article  Google Scholar 

  • Brett RA (1986) The Ecology and Behavior of the Naked Mole-Rat (Heterocephalus glaber, Ruppell) (Rodentia, Bathyergidae). Ph.D. dissertation, University of London, London, UK

    Google Scholar 

  • Buffenstein R (1996) Ecophysiological responses to a subterranean habitat; A Bathyergid perspective. Mammalia 60:591–605

    Article  Google Scholar 

  • Buffenstein R (2000) Ecophysiological responses to an underground habitat. In: Lacey E, Patton J, Cameron G (eds) The Biology of Subterranean Rodents. Chicago University Press, Chicago, pp 62–110

    Google Scholar 

  • Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60:1369–1377

    Article  PubMed  Google Scholar 

  • Buffenstein R (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. J Comp Physiol B 178:439–445

    Article  PubMed  Google Scholar 

  • Buffenstein R, Jarvis JUM (2002) The naked mole rat--a new record for the oldest living rodent. SAGE KE, 2002: pe7

    Google Scholar 

  • Buffenstein R, Pinto M (2009) Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 299:101–111

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R, Woodley R (2001) Thermogenic responses to cold acclimation in naked mole-rats; evidence for central constraints limiting metabolism. Am Zool 41:1400–1401

    Google Scholar 

  • Buffenstein R, Yahav S (1991a) Is the naked mole-rat, Heterocephalus glaber, a poikilothermic or poorly thermoregulating endothermic mammal? J Therm Biol 16:227–232

    Google Scholar 

  • Buffenstein R, Yahav S (1991b) Cholecalciferol has no effect on calcium and inorganic phosphorus balance in a naturally cholecalciferol-deplete subterranean mammal, the naked mole rat (Heterocephalus glaber). J Endocrinol 129:21–26

    Google Scholar 

  • Buffenstein R, Sergeev IN, Pettifor JM (1993) Vitamin D hydroxylases and their regulation in a naturally vitamin D-deficient subterranean mammal, the naked mole rat (Heterocephalus glaber). J Endocrinol 138:59–64

    Google Scholar 

  • Buffenstein R, Jarvis JU, Opperman LA, Cavaleros M, Ross FP, Pettifor JM (1994a) Subterranean mole-rats naturally have an impoverished calciol status, yet synthesize calciol metabolites and calbindins. Eur J Endocrinol 130:402–409

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R, Sergeev IN, Pettifor JM (1994b) Absence of calcitriol-mediated nongenomic actions in isolated intestinal cells of the Damaraland mole-rat (Cryptomys damarensis). Gen Comp Endocrinol 95:25–30

    Google Scholar 

  • Buffenstein R, Woodley R, Thomadakis C, Daly TJ, Gray DA (2001) Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am J Phys Regul Integr Comp Phys 280:R149–R155

    CAS  Google Scholar 

  • Buffenstein R, Nelson OL, Corbit KC (2014) Questioning the preclinical paradigm: natural, extreme biology as an alternative discovery platform. Aging (Albany NY) 6:913–920

    Article  Google Scholar 

  • Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM (2020) Probing pedomorphy and prolonged lifespan in naked mole-rats and dwarf mice. Physiology 35:96–111

    Article  CAS  PubMed  Google Scholar 

  • Chiao YA, Lakatta E, Ungvari Z, Dai D-F, Rabinovitch P (2016) Cardiovascular disease and aging. In: Sierra F., Kohanski R. (eds) Advances in Geroscience. Springer, New York, pp 121–160

    Google Scholar 

  • Chung D, Dzal YA, Seow A, Milsom WK, Pamenter ME (2016) Naked mole rats exhibit metabolic but not ventilatory plasticity following chronic sustained hypoxia. Proc R Soc B Biol Sci 283(1827):20160216

    Google Scholar 

  • Coen CW, Bennett N, Holmes MM, Faulkes CG (2021) Neuropeptidergic and neuroendocrine systems underlying eusociality and the concomitant social regulation of reproduction in naked mole-rats: a comparative approach. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 59–103

    Google Scholar 

  • Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Corda M, De Rosa MC, Pellegrini MG, Sanna MT, Olianas A, Fais A, Manca L, Masala B, Zappacosta B, Ficarra S, Castagnola M, Giardina B (2000) Adult and fetal haemoglobin: functional and molecular modelling studies. Biochem J 346(1):193–199

    Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature Biology of Animals. Chapman and Hall, London

    Book  Google Scholar 

  • Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z (2007) Vascular aging in the longest-living rodent, the naked mole-rat. Am J Physiol Heart Circ Physiol 293(2):H919–927

    Google Scholar 

  • Dai DF, Chen T, Johnson SC, Szeto H, Rabinovitch PS (2012) Cardiac aging: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 16:1492–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daly TJ, Buffenstein R (1998) Skin morphology and its role in thermoregulation in mole-rats, Heterocephalus glaber and Cryptomys hottentotus. J Anat 193(4):495–502

    Google Scholar 

  • Daly TJ, Williams LA, Buffenstein R (1997) Catecholaminergic innervation of interscapular brown adipose tissue in the naked mole-rat (Heterocephalus glaber). J Anat 190 (3):321–326

    Google Scholar 

  • de Magalhaes JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62:149–160

    Article  PubMed  Google Scholar 

  • Delaney MA, Imai DM, Buffenstein R (2021) Spontaneous disease and pathology of naked mole-rats. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 353–380

    Google Scholar 

  • Delbridge LMD, Benson VL, Ritchie RH, Mellor KM (2016) Diabetic cardiomyopathy: the case for a role of fructose in disease etiology. Diabetes 65:3521–3528

    Article  CAS  PubMed  Google Scholar 

  • DeLuca HF (2004) Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696S

    Article  CAS  PubMed  Google Scholar 

  • Dengler-Crish CM, Catania KC (2007) Phenotypic plasticity in female naked mole-rats after removal from reproductive suppression. J Exp Biol 210:4351–4358

    Article  PubMed  Google Scholar 

  • Dewar AD (1968) Litter size and the duration of pregnancy in mice. Q J Exp Physiol Cogn Med Sci 53:155–161

    CAS  PubMed  Google Scholar 

  • Doğan M, Erol M, Cesur Y, Yuca SA, Doğan Z (2009) The effect of 25-hydroxyvitamin D3 on the immune system. J Pediatr Endocrinol Metab 22:929–935

    Google Scholar 

  • Dzal Y, Seow A, Borecky L, Chung D, Gill S, Milsom B, Pamenter ME (2019) Glutamatergic receptors modulate normoxic but not hypoxic ventilation and metabolism in naked mole rats. Front Physiol 10:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Edrey YH, Hanes M, Pinto M, Mele J, Buffenstein R (2011a) Successful aging and sustained good health in the naked mole-rat: a long-lived mammalian model for biogerontology and biomedical research. ILAR J 52:41–53

    Google Scholar 

  • Edrey YH, Park TJ, Kang H, Biney A, Buffenstein R (2011b) Endocrine function and neurobiology of the longest-living rodent, the naked mole-rat. Exp Gerontol 46:116–123

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Seim I, Huang Z, Gerashchenko MV, Xiong Z, Turanov AA, Zhu Y, Lobanov AV, Fan D, Yim SH (2014) Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes. Cell Rep 8:1354–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkes CG, Bennett NC, Bruford MW, O’Brien HP, Aguilar GH, Jarvis JU (1997) Ecological constraints drive social evolution in the African mole-rats. Proc Biol Sci 264:1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkes CG, Eykyn TR, Aksentijevic D (2019) Cardiac metabolomic profile of the naked mole-rat—glycogen to the rescue. Biol Lett 15:20190710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukagawa N, Bandini L, Young JB (1990) Effect of age on body composition and resting metabolic rate. Am J Physiol-Endocrinol Metab 259:E233–E238

    Google Scholar 

  • Geiser F (2008) Ontogeny and phylogeny of endothermy and torpor in mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 150:176–180

    Article  PubMed  CAS  Google Scholar 

  • Goldman BD, Goldman SL, Lanz T, Magaurin A, Maurice A (1999) Factors influencing metabolic rate in naked mole-rats (Heterocephalus glaber). Physiol Behav 66:447–459

    Google Scholar 

  • Goodwin RFW (1956) Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus. J Physiol 132:146–156

    Google Scholar 

  • Grimes KM, Lindsey ML, Gelfond JA, Buffenstein R (2012) Getting to the heart of the matter: age-related changes in diastolic heart function in the longest-lived rodent, the naked mole rat. J Gerontol A Biol Sci Med Sci 67:384–394

    Google Scholar 

  • Grimes KM, Reddy AK, Lindsey ML, Buffenstein R (2014a) And the beat goes on: maintained cardiovascular function during aging in the longest-lived rodent, the naked mole-rat. Am J Physiol Heart Circ Physiol 307:H284–H291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimes KM, Voorhees A, Chiao YA, Han HC, Lindsey ML, Buffenstein R (2014b) Cardiac function of the naked mole-rat: ecophysiological responses to working underground. Am J Physiol Heart Circ Physiol 306:H730–H737

    Article  CAS  PubMed  Google Scholar 

  • Grimes KM, Barefield DY, Kumar M, McNamara JW, Weintraub ST, de Tombe PP, Sadayappan S, Buffenstein R (2017) The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent. Pflügers Archiv 469:1603–1613

    Google Scholar 

  • Hart JS (1971) Rodents. In: Whittow GC (ed) Comparative Physiology of Thermoregulation Vol II Mammals. Elsevier, Cambridge, pp 1–149

    Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185:747–756

    Article  CAS  PubMed  Google Scholar 

  • Henry EC, Dengler-Crish CM, Catania KC (2007) Growing out of a caste-reproduction and the making of the queen mole-rat. J Exp Biol 210:261–268

    Article  PubMed  Google Scholar 

  • Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R, Lunn D, Bigley RB, Yu H, Wang J (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364:184–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hislop MS, Buffenstein R (1994) Noradrenaline induces nonshivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the Damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J Therm Biol 19:25–32

    Google Scholar 

  • Hochachka PW (1998) Mechanism and evolution of hypoxia-tolerance in humans. J Exp Biol 201:1243–1254

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical Adaptation, Mechanism and Process in Physiological Evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  • Holmes MM (2016) Social regulation of adult neurogenesis: a comparative approach. Front Neuroendocrinol 41:59–70

    Article  PubMed  Google Scholar 

  • Holtze S, Braude S, Lemma A, Koch R, Morhart M, Szafranski K, Platzer M, Alemayehu F, Goeritz F, Hildebrandt TB (2018) The microenvironment of naked mole-rat burrows in East Africa. Afr J Ecol 56:279–289

    Article  Google Scholar 

  • Huang Y, Randall Tracy GE, Walsberg AM, Fang P, Brown D, Alfred N, Hoek V (2001) Absence of aquaporin-4 water channels from kidneys of the desert rodent Dipodomys merriami merriami. Am J Physiol Renal Physiol 280:F794–F802

    Google Scholar 

  • Hulbert AJ (2000) Thyroid hormones and their effects: a new perspective. Biol Rev Camb Philos Soc 75:519–631

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Else PL (2004) Basal metabolic rate: history, composition, regulation, and usefulness. Physiol Biochem Zool 77:869–876

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Faulks SC, Buffenstein R (2006) Oxidation-resistant membrane phospholipids can explain longevity differences among the longest-living rodents and similarly-sized mice. J Gerontol A Biol Sci Med Sci 61:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  PubMed  Google Scholar 

  • Husson Z, Smith ESJ (2018) Naked mole-rat cortical neurons are resistant to acid-induced cell death. Mol Brain 11:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IUPS (2001) IUPS thermal commission glossary of terms for thermal physiology. Third edition. Jpn J Physiol 51:245–280

    Google Scholar 

  • Jarvis JUM (1991) Methods for capturing, transporting, and maintaining naked mole-rats in captivity. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp 476–483

    Google Scholar 

  • Jarvis JUM, Bennett NC (1991) Ecology and behavior of the family Bathyergidae. In: Sherman PW, Jarvus JUM, Alexander RD (eds) The Biology of the Naked Mole-Rat. Princeton University Press, Princeton, pp 69-96

    Google Scholar 

  • Jarvis JU, O’Riain MJ, Bennett NC, Sherman PW (1994) Mammalian eusociality: a family affair. Trends Ecol Evol 9:47–51

    Article  CAS  PubMed  Google Scholar 

  • Johansen K, Lykkeboe G, Weber RE, Maloiy GM (1976) Blood respiratory properties in the naked mole rat, Heterocephalus glaber, a mammal of low body temperature. Respir Physiol 28:303–314

    Google Scholar 

  • Johnson RJ, Stenvinkel P, Andrews P, Sánchez-Lozada LG, Nakagawa T, Gaucher E, Andres-Hernando A, Rodriguez-Iturbe B, Jimenez CR, Garcia G (2019) Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Int Med 287(3):252–262

    Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    Google Scholar 

  • Kilkkinen A, Knekt P, Aro A, Rissanen H, Marniemi J, Heliövaara M, Impivaara O, Reunanen A (2009) Vitamin D status and the risk of cardiovascular disease death. Am J Epidemiol 170:1032–1039

    Article  PubMed  Google Scholar 

  • Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN (2011) Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korte FS, McDonald KS (2007) Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain. J Physiol 581:725–739

    Google Scholar 

  • Kramer B, Buffenstein R (2004) The pancreas of the naked mole-rat (Heterocephalus glaber): an ultrastructural and immunocytochemical study of the endocrine component of thermoneutral and cold acclimated animals. Gen Comp Endocrinol 139:206–214

    Google Scholar 

  • Kuro-o M (2010a) Klotho. Pflügers Archiv-Eur J Physiol 459:333–343

    Article  CAS  Google Scholar 

  • Kuro-o M (2010b) A potential link between phosphate and aging—lessons from Klotho-deficient mice. Mech Ageing Dev 131:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z (2006) Comparison of endothelial function, O2-* and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol Heart Circ Physiol 291:H2698–H2704

    Google Scholar 

  • Lagunas-Rangel FA, Chavez-Valencia V (2017) Learning of nature: the curious case of the naked mole rat. Mech Ageing Dev 164:76–81

    Article  PubMed  Google Scholar 

  • Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107:346–354

    Article  PubMed  Google Scholar 

  • Larson J, Park TJ (2009) Extreme hypoxia tolerance of naked mole-rat brain. Neuroreport 20:1634–1637

    Article  PubMed  Google Scholar 

  • Larson J, Drew KL, Folkow LP, Milton SL, Park TJ (2014) No oxygen? No problem! Intrinsic brain tolerance to hypoxia in vertebrates. J Exp Biol 217:1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaVinka PC, Park TJ (2012) Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat. PLoS One 7:e45060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavocat R (1978) Rodentia and lagomorpha. In: Magio VH, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, pp 69–89

    Google Scholar 

  • Legeza B, Marcolongo P, Gamberucci A, Varga V, Bánhegyi G, Benedetti A, Odermatt A (2017) Fructose, glucocorticoids and adipose tissue: implications for the metabolic syndrome. Nutrients 9:426 

    Google Scholar 

  • Lewin GR, Smith ESJ, Reznick J, Debus K, Barker A, Park TJ (2021) The somatosensory world of the African naked mole-rat. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 197–220

    Google Scholar 

  • Lewis KN, Buffenstein R (2016) The naked mole-rat: a resilient rodent model of aging, longevity and healthspan. In: Kaeberlein MR, Martin G (eds) Handbook of the Biology of Aging. Academic Press, London, pp 179–204

    Google Scholar 

  • Lewis KN, Mele J, Hayes JD, Buffenstein R (2010) Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol 50:829–843

    Google Scholar 

  • Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials – a mini-review. Gerontology 58:453–462

    Google Scholar 

  • Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R (2015) Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci 112:3722–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang S, Mele J, Wu Y, Buffenstein R, Hornsby PJ (2010) Resistance to experimental tumorigenesis in cells of a long-lived mammal, the naked mole-rat (Heterocephalus glaber). Aging Cell 9:626–635

    Google Scholar 

  • Lin TD, Buffenstein R (2021) The unusual immune system of the naked mole-rat. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 315–327

    Google Scholar 

  • Liu Z, Wang W, Zhang T-Z, Li G-H, He K, Huang J-F, Jiang X-L, Murphy RW, Shi P (2014) Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals. Proc R Soc B Biol Sci 281:20132950 

    Google Scholar 

  • Lovegrove BG (1986) The metabolism of social subterranean rodents: adaptation to aridity. Oecologia 69:551–555

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove BG (1987) Thermoregulation in the subterranean rodent Georychus capensis (Rodentia: Bathyergidae). Physiol Zool 60(1):174–180

    Google Scholar 

  • Lovegrove BG (1989) The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture. Physiol Zool 62:449–469

    Google Scholar 

  • MacMillen RE, Baudinette RV, Lee AK (1972) Water economy and energy metabolism of the sandy inland mouse, Leggadina hermannsburgensis. J Mammal 53:529–539

    Google Scholar 

  • Maina JN, Maloiy GMO, Makanya AN (1992) Morphology and morphometry of the lungs of two East African mole rats, Tachyoryctes splendens and Heterocephalus glaber (Mammalia, Rodentia). Zoomorphology 112:167–179

    Google Scholar 

  • Maina JN, Gebreegziabher Y, Woodley R, Buffenstein R (2001) Effects of change in environmental temperature and natural shifts in carbon dioxide and oxygen concentrations on the lungs of captive naked mole-rats (Heterocephalus glaber): a morphological and morphometric study. J Zool 253:371–382

    Google Scholar 

  • Marhold S, Nagel A (1995) The energetics of the common mole rat Cryptomyś, a subterranean eusocial rodent from Zambia. J Comp Physiol B 164(8):636–645

    Google Scholar 

  • Mathieu C, Gysemans C, Giulietti A, Bouillon R (2005) Vitamin D and diabetes. Diabetologia 48:1247–1257

    Article  CAS  PubMed  Google Scholar 

  • McGowan NE, Scantlebury DM, Bennett NC, Maule AG, Marks NJ (2020) Thermoregulatory differences in African mole-rat species from disparate habitats: responses and limitations. J Therm Biol 88:102495

    Google Scholar 

  • McNab BK (1966) The metabolism of fossorial rodents: a study of convergence. Ecology 47:712–733

    Google Scholar 

  • McNab BK (1979) The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60:1010–1021

    Article  Google Scholar 

  • McNab BK (2019) What determines the basal rate of metabolism? J Exp Biol 222(15):205591

    Google Scholar 

  • Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, Koya I, Okada Y, Kimura T, Tsuchiya Y (2016) Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun 7:1–9

    Article  CAS  Google Scholar 

  • Mooney SJ, Forger NG, Holmes MM (2021) Adult neural plasticity in naked mole-rats: implications of fossoriality, longevity and sociality on the brain’s capacity for change. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 105–135

    Google Scholar 

  • Mortola JP, Rezzonico R, Lanthier C (1989) Ventilation and oxygen consumption during acute hypoxia in newborn mammals: a comparative analysis. Respir Physiol 78:31–43

    Article  CAS  PubMed  Google Scholar 

  • Narayan V, McMahon M, O’Brien J, McAllister F, Buffenstein R (2021) Insights into the molecular basis of genome stability and pristine proteostasis in naked mole-rats. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 287–314

    Google Scholar 

  • Narolska NA, van Loon RB, Boontje NM, Zaremba R, Penas SE, Russell J, Spiegelenberg SR, Huybregts MA, Visser FC, de Jong JW, van der Velden J, Stienen GJ (2005) Myocardial contraction is 5-fold more economical in ventricular than in atrial human tissue. Cardiovasc Res 65:221–229

    Article  CAS  PubMed  Google Scholar 

  • Nathaniel TI, Otukonyong E, Abdellatif A, Soyinka JO (2012) Effect of hypoxia on metabolic rate, core body temperature, and c-fos expression in the naked mole rat. Int J Dev Neurosci 30:539–544

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Simson S, Beiles A, Yahav S (1989) Adaptive variation in structure and function of kidneys of speciating subterranean mole rats. Oecologia 79:366–371

    Article  CAS  PubMed  Google Scholar 

  • O’Connor TP, Lee A, Jarvis JUM, Buffenstein R (2002) Prolonged longevity in naked mole-rats: age-related changes in metabolism, body composition and gastrointestinal function. Comp Biochem Physiol A Mol Integr Physiol 133:835–842

    Google Scholar 

  • O’Riain MJ, Jarvis JUM (1998) The dynamics of growth in naked mole-rats: the effects of litter order and changes in social structure. J Zool 246:49–60

    Article  Google Scholar 

  • O’Riain MJ, Jarvis JUM, Alexander R, Buffenstein R, Peeters C (2000) Morphological castes in a vertebrate. Proc Natl Acad Sci 97:13194–13197

    Article  PubMed  PubMed Central  Google Scholar 

  • Oiwa, Y, Oka K, Yasui H, Higashikawa K, Bono H, Kawamura Y, Miyawaki S, Watarai A, Kikusui T, and Shimizu A (2020) Characterization of brown adipose tissue thermogenesis in the naked mole-rat (Heterocephalus glaber), a poikilothermic mammal. Sci Rep 10:19488

    Google Scholar 

  • Opazo JC, Eduardo Palma R, Melo F, Lessa EP (2005) Adaptive evolution of the insulin gene in caviomorph rodents. Mol Biol Evol 22:1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Orr ME, Garbarino VR, Salinas A, Buffenstein R (2016) Extended postnatal brain development in the longest-lived rodent: prolonged maintenance of neotenous traits in the naked mole-rat brain. Front Neurosci 10:504

    Article  PubMed  PubMed Central  Google Scholar 

  • Pamenter M, Dzal Y, Milsom W (2014) Profound metabolic depression in the hypoxia-tolerant naked mole rat. FASEB J 28 (S1):879.2

    Google Scholar 

  • Pamenter ME, Dzal YA, Thompson WA, Milsom WK (2019) Do naked mole rats accumulate a metabolic acidosis or an oxygen debt in severe hypoxia? J Exp Biol 222:jeb191197

    PubMed  Google Scholar 

  • Park TJ, Comer C, Carol A, Lu Y, Hong H-S, Rice FL (2003) Somatosensory organization and behavior in naked mole-rats: II. Peripheral structures, innervation, and selective lack of neuropeptides associated with thermoregulation and pain. J Comp Neurol 465:104–120

    Article  PubMed  Google Scholar 

  • Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, Phjl Kuich C, Zasada BM, Browe W, Hamann DT, Applegate MH, Radke T, Kosten H, Lutermann V, Gavaghan O, Eigenbrod V, Begay VG, Amoroso V, Govind RD, Minshall ESJ, Smith J, Larson M, Gotthardt SK, Lewin GR (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307–311

    Article  CAS  PubMed  Google Scholar 

  • Penz OK, Fuzik J, Kurek AB, Romanov R, Larson J, Park TJ, Harkany T, Keimpema E (2015) Protracted brain development in a rodent model of extreme longevity. Sci Rep 5:11592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BL, Larson J, Buffenstein R, Park TJ, Fall CP (2012a) Blunted neuronal calcium response to hypoxia in naked mole-rat hippocampus. PLoS One 7:e31568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson BL, Park TJ, Larson J (2012b) Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals. Neurosci Lett 506:342–345

    Article  CAS  PubMed  Google Scholar 

  • Piers LS, Soares MJ, McCormack LM, O’Dea K (1998) Is there evidence for an age-related reduction in metabolic rate? J Appl Physiol 85:2196–2204

    Article  CAS  PubMed  Google Scholar 

  • Pinto M, Jepsen KJ, Terranova CJ, Buffenstein R (2010) Lack of sexual dimorphism in femora of the eusocial and hypogonadic naked mole-rat: a novel animal model for the study of delayed puberty on the skeletal system. Bone 46:112–120

    Article  CAS  PubMed  Google Scholar 

  • Poehlman ET, Goran MI, Gardner AW, Ades PA, Arciero PJ, Katzman-Rooks SM, Montgomery SM, Toth MJ, Sutherland PT (1993) Determinants of decline in resting metabolic rate in aging females. Am J Physiol-Endocrinol Metab 264:E450–55

    Google Scholar 

  • Ponganis PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G (2003) Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comp Biochem Physiol A Mol Integr Physiol 135:477–487

    Article  CAS  PubMed  Google Scholar 

  • Popov NA, Skulachev VP (2019) Neotenic Traits in Heterocephalus glaber and Homo sapiens. Biochem Mosc 84:1484–1489

    Google Scholar 

  • Pound KM, Arteaga GM, Fasano M, Wilder T, Fischer SK, Warren CM, Wende AR, Farjah M, Dale Abel E, John Solaro R (2011) Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia. J Mol Cell Cardiol 51:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  CAS  PubMed  Google Scholar 

  • Reddy AK, Li Y-H, Pham TT, Ochoa LN, Treviño MT, Hartley CJ, Michael LH, Entman ML, Taffet GE (2003) Measurement of aortic input impedance in mice: effects of age on aortic stiffness. Am J Phys Heart Circ Phys 285:H1464–H1470

    Google Scholar 

  • Rodriguez KA, Valentine JM, Kramer DA, Gelfond JA, Kristan DM, Nevo E, Buffenstein R (2016) Determinants of rodent longevity in the chaperone-protein degradation network. Cell Stress and Chaperones 21:453–466

    Google Scholar 

  • Ruby JG, Smith M, Buffenstein R (2018) Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. elife 7:e31157

    Google Scholar 

  • Sanchez JR, Milton SL, Corbit KC, Buffenstein R (2015) Multifactorial processes to slowing the biological clock: Insights from a comparative approach. Exp Gerontol 71:27–37

    Article  PubMed  Google Scholar 

  • Schuhmacher L, Husson Z, Smith ESJ (2015) The naked mole-rat as an animal model in biomedical research: current perspectives. Open Access Anim Physiol 7:137–148

    Google Scholar 

  • Scriven JJ, Whitehorn PR, Goulson D, Tinsley MC (2016) Bergmann’s body size rule operates in facultatively endothermic insects: evidence from a complex of cryptic bumblebee species. PLoS One 11:e0163307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22:807–818

    Article  CAS  PubMed  Google Scholar 

  • Shah ZA, Li R-C, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S (2007) Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience 147:53–59

    Article  CAS  PubMed  Google Scholar 

  • Shams I, Avivi A, Nevo E (2005) Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic–hypercapnic stresses. Comp Biochem Physiol A Mol Integr Physiol 142:376–382

    Article  PubMed  CAS  Google Scholar 

  • Sherman PW, Jarvis JUM (2002) Extraordinary life spans of naked mole-rats (Heterocephalus glaber). J Zool (Lond) 258:307–311

    Google Scholar 

  • Silvestri E, Moreno M, Lombardi A, Ragni M, de Lange P, Alexson SEH, Lanni A, Goglia F (2005) Thyroid-hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Lett 579:1639–1645

    Google Scholar 

  • Skulachev VP, Holtze S, Vyssokikh MY, Bakeeva LE, Skulachev MV, Markov AV, Hildebrandt TB, Sadovnichii VA (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans). Physiol Rev 97:699–720

    Google Scholar 

  • Smith M, Buffenstein R (2021) Managed care of naked mole-rats. In: Buffenstein R, Park TJ, Holmes MM (eds) The Extraordinary Biology of the Naked Mole-Rat. Springer, New York, pp 381–408

    Google Scholar 

  • Smith ESJ, Park TJ (2020) Neurobiology: crowdsourcing CO2 to conserve brain energy. Curr Biol 30:R649–RR51

    Google Scholar 

  • Smith ESJ, Omerbasic D, Lechner SG, Anirudhan G, Lapatsina L, Lewin GR (2011) The molecular basis of acid insensitivity in the African naked mole-rat. Science 334:1557–1560

    Google Scholar 

  • Stenvinkel P, Larsson TE (2013) Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis 62:339–351

    Article  PubMed  Google Scholar 

  • Stenvinkel P, Painer J, Kuro-o M, Lanaspa M, Arnold W, Ruf T, Shiels PG, Johnson RJ (2018) Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol 14(4):265–284

    Google Scholar 

  • Stenvinkel P, Meyer CJ, Block GA, Chertow GM, Shiels PG (2019) Understanding the role of the cytoprotective transcription factor NRF2-Lessons from evolution, the animal kingdom and rare progeroid syndromes. Nephrol Dial Transplant 35(12):2036–2045

    Google Scholar 

  • Stenvinkel P, Painer J, Johnson RJ, Natterson-Horowitz B (2020) Biomimetics - Nature’s roadmap to insights and solutions for burden of lifestyle diseases. J Intern Med 287:238–251

    Article  CAS  PubMed  Google Scholar 

  • Sumbera R (2019) Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia) - a review. J Therm Biol 79:166–189

    Article  PubMed  Google Scholar 

  • Tappy L (2018) Fructose metabolism and noncommunicable diseases: recent findings and new research perspectives. Curr Opin Clin Nutr Metab Care 21:214–222

    Article  CAS  PubMed  Google Scholar 

  • Urboniene D, Dias FAL, Pena JR, Walker LA, Solaro RJ, Wolska BM (2005) Expression of slow skeletal troponin I in adult mouse heart helps to maintain the left ventricular systolic function during respiratory hypercapnia. Circ Res 97:70–77

    Article  CAS  PubMed  Google Scholar 

  • Urison NT, Buffenstein R (1994) Shifts in thermoregulatory patterns with pregnancy in the poikilothermic mammal—the naked mole-rat (Heterocephalus glaber). J Therm Biol 19:365–371

    Google Scholar 

  • Urison NT, Buffenstein RB (1995) Metabolic and body-temperature changes during pregnancy and lactation in the naked mole-rat (Heterocephalus glaber). Physiol Zool 68:402–420

    Google Scholar 

  • Urison NT, Goelst K, Buffenstein R (1993) A positive fever response by a poikilothermic mammal, the naked mole-rat (Heterocephalus glaber). J Therm Biol 18:245–249

    Google Scholar 

  • van Aardt WJ, Bronner GN, Buffenstein R (2007) Hemoglobin-oxygen-affinity and acid-base properties of blood from the fossorial mole-rat, Cryptomys hottentotus Pretoriae. Comp Biochem Physiol A Mol Integr Physiol 147:50–56

    Google Scholar 

  • van der Velden J, Moorman AF, Stienen GJ (1998) Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J Physiol 507(2):497–510

    Google Scholar 

  • Weber RE, Jarvis JUM, Fago A, Bennett NC (2017) O2 binding and CO2 sensitivity in haemoglobins of subterranean African mole rats. J Exp Biol 220:3939–3948

    Google Scholar 

  • West JB (2012) Respiratory Physiology: the Essentials. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • White CR (2003) The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol Biochem Zool 76:122–134

    Article  PubMed  Google Scholar 

  • Willmer P, Stone G, Johnston I (2000) Environmental Physiology of Animals. Blackwell Science, Oxford

    Google Scholar 

  • Withers PC, Jarvis JUM (1980) The effect of huddling on thermoregulation and oxygen consumption for the naked mole-rat. Comp Biochem Physiol 66:215–219

    Article  Google Scholar 

  • Woodley R (2000) Cold Acclimation in an Endothermic Poikilotherm, the Naked Mole-Rat (Heterocephalus glaber); Effects on Thermoregulation and Reproduction University of the Witwatersrand, Ph.D. Dissertation: Johannesburg, South Africa

    Google Scholar 

  • Woodley R, Buffenstein R (2002) Thermogenic changes with chronic cold exposure in the naked mole-rat (Heterocephalus glaber). Comp Biochem Physiol A Mol Integr Physiol 133:827–834

    Google Scholar 

  • Xiao B, Wang S, Yang G, Sun X, Zhao S, Lin L, Cheng J, Yang W, Cong W, Sun W (2017) HIF-1α contributes to hypoxia adaptation of the naked mole rat. Oncotarget 8(66):109941–109951

    Google Scholar 

  • Xie WS, Luong TT, Finegood DT, Van de Werve G (2000) Dietary Pi deprivation in rats affects liver CAMP, glycogen, key steps of gluconeogenesis and glucose production. Biochem J 352:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yahav S, Buffenstein R (1991) Huddling behavior facilitates homeothermy in the naked mole-rat, Heterocephalus glaber. Physiol Zool 64:871–884

    Google Scholar 

  • Yahav S, Buffenstein R, Pettifor JM (1993) Calcium and inorganic phosphorus metabolism in naked mole rats, Heterocephalus glaber, is only indirectly affected by cholecalciferol. Gen Comp Endocrinol 89:161–166

    Google Scholar 

  • Yang T, Buffenstein R (2004) Effect of aging on glycated hemoglobin and blood glucose concentration in naked mole-rats. FASEB J 18:A1301–A1302

    Google Scholar 

  • Yang T, Buffenstein R, O’Connor TP (2002) Disparate age effects on gastrointestinal enzymes in naked mole rats. Integr Comp Biol 42:1340–1341

    Google Scholar 

  • Zelova J, Sumbera R, Sedlacek F, Burda H (2007) Energetics in a solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and allometry of RMR in African mole-rats (Bathyergidae). Comp Biochem Physiol A Mol Integr Physiol 147:412–419

    Google Scholar 

  • Zions M, Meehan EF, Kress ME, Thevalingam D, Jenkins EC, Kaila K, Puskarjov M, McCloskey DP (2020) Nest carbon dioxide masks GABA-dependent seizure susceptibility in the naked mole-rat. Curr Biol 30:2068–2077

    Google Scholar 

  • Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart PH (2011) Vitamin D deficiency causes deficits in lung function and alters lung structure. Am J Respir Crit Care Med 183:1336–1343

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Botstein, Graham Ruby and anonymous reviewers for their constructive critique of this chapter. Financial support from Calico Life Sciences LLC is gratefully acknowledged. Figures were created using Biorender.com

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rochelle Buffenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buffenstein, R., Craft, W. (2021). The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan. In: Buffenstein, R., Park, T.J., Holmes, M.M. (eds) The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology, vol 1319. Springer, Cham. https://doi.org/10.1007/978-3-030-65943-1_8

Download citation

Publish with us

Policies and ethics