Skip to main content

Robust Super-Resolution of Real Faces Using Smooth Features

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels and signal-independent noises. So, in order to successfully super-resolve real faces, a method needs to be robust to a wide range of noise, blur, compression artifacts etc. Some of the recent works attempt to model these degradations from a dataset of real images using a Generative Adversarial Network (GAN). They generate synthetically degraded LR images and use them with corresponding real high-resolution (HR) image to train a super-resolution (SR) network using a combination of a pixel-wise loss and an adversarial loss. In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image, and the SR module generates an HR estimate using only these robust features. We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart. This interpolated LR image is then used along with it’s corresponding HR counterpart to train the super-resolution network from end to end. Entropy Regularized Wasserstein Divergence is used to force the encoded features learnt from the clean and degraded images to closely resemble those extracted from the interpolated image to ensure robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011). https://doi.org/10.1109/TPAMI.2010.161

  3. Bulat, A., Tzimiropoulos, G.: Super-fan: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs. CoRR abs/1712.02765 (2017). http://arxiv.org/abs/1712.02765

  4. Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a GAN to learn how to do image degradation first. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 187–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_12

    Chapter  Google Scholar 

  5. Cai, J., Gu, S., Timofte, R., Zhang, L.: Ntire 2019 challenge on real image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  6. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  7. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  8. Cemgil, T., Ghaisas, S., Dvijotham, K.D., Kohli, P.: Adversarially robust representations with smooth encoders. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=H1gfFaEYDS

  9. Chen, X., Wang, X., Lu, Y., Li, W., Wang, Z., Huang, Z.: RBPNET: an asymptotic residual back-projection network for super-resolution of very low-resolution face image. Neurocomputing 376, 119–127 (2020). https://doi.org/10.1016/j.neucom.2019.09.079. http://www.sciencedirect.com/science/article/pii/S0925231219313530

  10. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face super-resolution with facial priors. CoRR abs/1711.10703 (2017). http://arxiv.org/abs/1711.10703

  11. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transportation distances (2013)

    Google Scholar 

  12. Dogan, B., Gu, S., Timofte, R.: Exemplar guided face image super-resolution without facial landmarks. CoRR abs/1906.07078 (2019). http://arxiv.org/abs/1906.07078

  13. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. CoRR abs/1501.00092 (2015). http://arxiv.org/abs/1501.00092

  14. Du, C., Zewei, H., Anshun, S., Jiangxin, Y., Yanlong, C., Yanpeng, C., Siliang, T., Ying Yang, M.: Orientation-aware deep neural network for real image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  15. Feng, R., Gu, J., Qiao, Y., Dong, C.: Suppressing model overfitting for image super-resolution networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  16. Goodfellow, I.J., et al.: Generative adversarial networks (2014)

    Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. CoRR abs/1704.00028 (2017). http://arxiv.org/abs/1704.00028

  18. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNET: a wavelet-based CNN for multi-scale face super resolution. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1698–1706 (2017)

    Google Scholar 

  19. Jang, D., Park, R.: DenseNet with deep residual channel-attention blocks for single image super resolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1795–1803 (2019)

    Google Scholar 

  20. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution (2016)

    Google Scholar 

  21. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. CoRR abs/1511.04587 (2015). http://arxiv.org/abs/1511.04587

  22. Lai, W., Huang, J., Ahuja, N., Yang, M.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. CoRR abs/1710.01992 (2017). http://arxiv.org/abs/1710.01992

  23. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. CoRR abs/1609.04802 (2016). http://arxiv.org/abs/1609.04802

  24. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. arXiv preprint arXiv:1907.11922 (2019)

  25. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  26. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. CoRR abs/1707.02921 (2017). http://arxiv.org/abs/1707.02921

  27. Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world super-resolution (2019)

    Google Scholar 

  28. Martin Koestinger, Paul Wohlhart, P.M.R., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: proceedings of the First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies (2011)

    Google Scholar 

  29. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  30. Xin, J., Wang, N., Jiang, X., Li, J., Gao, X., Li, Z.: Facial attribute capsules for noise face super resolution (2020)

    Google Scholar 

  31. Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  32. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution face images with supplementary attributes. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 908–917 (2018)

    Google Scholar 

  33. Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face images by transformative discriminative autoencoders. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5367–5375 (2017)

    Google Scholar 

  34. Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution guided by facial component heatmaps. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 219–235. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_14

    Chapter  Google Scholar 

  35. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 814–81409 (2018)

    Google Scholar 

  36. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. CoRR abs/1807.02758 (2018). http://arxiv.org/abs/1807.02758

  37. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593 (2017). http://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Goswami .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1877 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goswami, S., Aakanksha, Rajagopalan, A.N. (2020). Robust Super-Resolution of Real Faces Using Smooth Features. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics