Skip to main content

Kinematic Calibration for Industrial Robot Using a Telescoping Ballbar

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

Abstract

Industrial robots are increasingly used in many applications where the positioning accuracy is of great importance. Kinematic calibration is an effective method to improve the positioning accuracy of industrial robots. In this paper, a new kinematic calibration method is proposed for six-axis serial industrial robots based on a single telescoping ballbar. The end of the robot to be calibrated is moved to a set of specific poses, and the actual distance between the tool center point (TCP) of the industrial robot and a fixed point in the world frame is measured by a telescoping ballbar. Through fitting the distance residual errors, the robot calibration problem is transformed into a nonlinear least-squares optimization problem. The optimization problem is solved using the Levenberg-Marquardt algorithm to derive the actual kinematic parameter errors of the robot. A simulation study demonstrates that the proposed method can effectively identify the kinematic parameter errors and the average position errors are reduced from 19.368 mm to 0.073 mm after calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiakolas, /.P.S., Conrad, K.L., Yih, T.C.: On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International journal of modeling and simulation 22(4), 245–254 (2002)

    Google Scholar 

  2. David, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22(1), 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  3. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  4. Okamura, K., Park, F.C.: Kinematic calibration using the product of exponentials formula. Robotica 14(4), 415–421 (1996)

    Google Scholar 

  5. Xiong, G., Ding, Y., Zhu, L.M.: A product-of-exponential-based robot calibration method with optimal measurement configurations. Int. J. Adv. Robot. Syst. 14(6), 1729881417743555 (2017)

    Google Scholar 

  6. Özgür, E., Mezouar, Y.: Kinematic modeling and control of a robot arm using unit dual quaternions. Robot. Auto. Syst. 77, 66–73 (2016)

    Google Scholar 

  7. Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot. Comput. Integr. Manuf. 29(1), 236–245 (2013)

    Google Scholar 

  8. Sun, T., Zhai, Y., Song, Y., et al.: Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker. Robot. Comput.-Integr. Manuf. 41, 78–91 (2016)

    Google Scholar 

  9. Joubair, A., Bonev, I.A.: Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int. J. Adv. Manuf. Technol. 77(1–4), 515–523 (2015)

    Google Scholar 

  10. Wang, R., Wu, A., Chen, X., et al.: A point and distance constraint based 6R robot calibration method through machine vision. Robot. Comput.-Integr. Manuf. 65, 101959 (2020)

    Google Scholar 

  11. Ikits, M., Hollerbach, J.M.: Kinematic calibration using a plane constraint. In: International Conference on Robotics and Automation,Vol. 4, pp. 3191–3196. IEEE (1997)

    Google Scholar 

  12. Hanqi, Z., Motaghedi, S., Roth, Z.: Robot calibration with planar constraints. In: IEEE International Conference Robotics Automation, pp. 805–810. IEEE (1999)

    Google Scholar 

  13. Joubair, A., Bonev, I.A.: Non-kinematic calibration of a six-axis serial robot using planar constraints. Precis. Eng. 40, 325–333 (2015)

    Google Scholar 

  14. Lembono, T.S., Suárez-Ruiz, F., Pham, Q.C.: SCALAR: simultaneous calibration of 2-D laser and robot kinematic parameters using planarity and distance constraints. IEEE Trans. Autom. Sci. Eng. 16(4), 1971–1979 (2019)

    Google Scholar 

  15. Nubiola, A., Slamani, M., Bonev, I.A.: A new method for measuring a large set of poses with a single telescoping ballbar. Precis. Eng. 37(2), 451–460 (2013)

    Google Scholar 

  16. Nubiola, A., Bonev, I.A.: Absolute robot calibration with a single telescoping ballbar. Precis. Eng. 38(3), 472–480 (2014)

    Google Scholar 

  17. Hayati, S.A.: Robot arm geometric link parameter estimation. In: The 22nd IEEE Conference on Decision and Control, pp. 1477–1483. IEEE (1983)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Nature Science Foundation of China (Grant No. 51905346, No. 91648202 and No. 91948301)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Guo, P., Zhang, Y., Zhu, L. (2020). Kinematic Calibration for Industrial Robot Using a Telescoping Ballbar. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics