Skip to main content

Learning Control Sets for Lattice Planners from User Preferences

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIV (WAFR 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 17))

Included in the following conference series:

Abstract

This work investigates the design of a motion planner that can capture user preferences. In detail, we generate a sparse control set for a lattice planner which closely follows the preferences of a user. Given a set of demonstrated trajectories from a single user, we estimate user preferences based on a weighted sum of trajectory features. We then optimize a set of connections in the lattice of given size for the user cost function. The restricted number of connections limits the branching factor, ensuring strong performance during subsequent motion planning. Further, every trajectory in the control set reflects the learned user preference while the sub-optimality due to the size restriction is minimized. We show that this problem is optimally solved by applying a separation principle: First, we find the best estimate of the user cost function given the data, then an optimal control set is computed given that estimate. We evaluate our work in a simulation for an autonomous robot in a four-dimensional spatiotemporal lattice and show that the proposed approach is suitable to replicate the demonstrated behaviour while enjoying substantially increased performance.

A. Botros and N. Wilde—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pivtoraiko, M., Kelly, A.: Kinodynamic motion planning with state lattice motion primitives. In: 2011 IEEE/RSJ IROS, pp. 2172–2179. IEEE (2011)

    Google Scholar 

  2. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  3. Likhachev, M., Ferguson, D.: Planning long dynamically feasible maneuvers for autonomous vehicles. IJRR 28(8), 933–945 (2009)

    Google Scholar 

  4. McNaughton, M., Urmson, C., Dolan, J.M., Lee, J.-W.: Motion planning for autonomous driving with a conformal spatiotemporal lattice. In: 2011 IEEE International Conference on Robotics and Automation. IEEE, pp. 4889–4895 (2011)

    Google Scholar 

  5. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425–466 (2008)

    Article  Google Scholar 

  6. Janson, L., Schmerling, E., Clark, A., Pavone, M.: Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. IJRR 34(7), 883–921 (2015)

    Google Scholar 

  7. Fraichard, T., Scheuer, A.: From Reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Robot. 20(6), 1025–1035 (2004)

    Article  Google Scholar 

  8. Botros, A., Smith, S.L.: Computing a minimal set of t-spanning motion primitives for lattice planners. In: 2019 IEEE/RSJ IROS, pp. 2328–2335, November 2019

    Google Scholar 

  9. González, D.S., Erkent, O., Romero-Cano, V., Dibangoye, J., Laugier, C.: Modeling driver behavior from demonstrations in dynamic environments using spatiotemporal lattices. In: 2018 IEEE ICRA, pp. 1–7. IEEE (2018)

    Google Scholar 

  10. Gu, T., Atwood, J., Dong, C., Dolan, J.M., Lee, J.-W.: Tunable and stable real-time trajectory planning for urban autonomous driving. In: 2015 IEEE/RSJ IROS, pp. 250–256. IEEE (2015)

    Google Scholar 

  11. Sadigh, D., Dragan, A.D., Sastry, S., Seshia, S.A.: Active preference-based learning of reward functions. In: Robotics: Science and Systems (RSS) (2017)

    Google Scholar 

  12. Abbeel, P., Dolgov, D., Ng, A.Y., Thrun, S.: Apprenticeship learning for motion planning with application to parking lot navigation. In: 2008 IEEE/RSJ IROS, pp. 1083–1090. IEEE (2008)

    Google Scholar 

  13. De Iaco, R., Smith, S.L., Czarnecki, K.: Learning a lattice planner control set for autonomous vehicles. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 549–556. IEEE (2019)

    Google Scholar 

  14. McNaughton, M., Urmson, C., Dolan, J.M., Lee, J.-W.: Motion planning for autonomous driving with a conformal spatiotemporal lattice. In: IEEE International Conference on Robotics and Automation, pp. 4889–4895 (2011)

    Google Scholar 

  15. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 1 (2004)

    Google Scholar 

  16. Palan, M., Landolfi, N.C., Shevchuk, G., Sadigh, D.: Learning reward functions by integrating human demonstrations and preferences, arXiv preprint arXiv:1906.08928 (2019)

  17. Cheung, E., Bera, A., Kubin, E., Gray, K., Manocha, D.: Identifying driver behaviors using trajectory features for vehicle navigation. In: 2018 IEEE/RSJ IROS, pp. 3445–3452. IEEE (2018)

    Google Scholar 

  18. Rufli, M., Siegwart, R.: On the design of deformable input-, state-lattice graphs. In: 2010 IEEE ICRA, pp. 3071–3077. IEEE (2010)

    Google Scholar 

  19. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Using probabilistic movement primitives in robotics. Auton. Robots 42(3), 529–551 (2018)

    Article  Google Scholar 

  20. Cohen, B.J., Chitta, S., Likhachev, M.: Search-based planning for manipulation with motion primitives. In: 2010 IEEE ICRA, pp. 2902–2908. IEEE (2010)

    Google Scholar 

  21. Korte, B., Vygen, J.: Combinatorial Optimization, 6th edn. Springer, Heidelberg (2018)

    Book  Google Scholar 

  22. Michini, B., Walsh, T.J., Agha-Mohammadi, A.-A., How, J.P.: Bayesian nonparametric reward learning from demonstration. IEEE Trans. Robot. 31(2), 369–386 (2015)

    Article  Google Scholar 

  23. Kasperski, A., Zielinski, P.: An approximation algorithm for interval data minmax regret combinatorial optimization problems. Inf. Process. Lett. 97(5), 177–180 (2006)

    Article  MathSciNet  Google Scholar 

  24. Wasserman, L.: All of Statistics: A Concise Course in Statistical Inference. Springer, New York (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Wilde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botros, A., Wilde, N., Smith, S.L. (2021). Learning Control Sets for Lattice Planners from User Preferences. In: LaValle, S.M., Lin, M., Ojala, T., Shell, D., Yu, J. (eds) Algorithmic Foundations of Robotics XIV. WAFR 2020. Springer Proceedings in Advanced Robotics, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-66723-8_23

Download citation

Publish with us

Policies and ethics