Skip to main content

Implementation of Non-stationary Channel Emulator Based on USRP

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2020)

Abstract

Inspired by the modular design of virtual instruments, a discrete non-stationary channel model and a flexible hardware architecture are proposed in this paper. On this basis, a universal channel emulator is implemented on universal software radio peripheral (USRP) platform. Moreover, we proposed a sum of linear frequency modulation (SoLFM) method to accurately generate non-stationary channel fading with continuous phase, i.e., Rayleigh fading, Rice fading, and log-normal fading channels. In addition, hardware measurement results demonstrate that the measured statistical properties are well consistent with the corresponding theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, J., Zhang, Y., Yu, Y., Xu, R., Zheng, Q., Zhang, P.: 3-D MIMO: how much does it meet our expectations observed from channel measurements? IEEE J. Sel. Areas Commun. 35(8), 1887–1903 (2017)

    Article  Google Scholar 

  2. Fan, W., et al.: A step toward 5G in 2020: low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas Propag. Mag. 59(1), 38–47 (2017)

    Article  Google Scholar 

  3. Konishi, Y., Kim, M., Ghoraishi, M., Takada, J., Suyama, S., Suzuki, H.: Channel sounding technique using MIMO software radio architecture. In: Proceedings of EuCAP11, Rome, Italy, May 2011

    Google Scholar 

  4. Habib, B., Farhat, H., Zaharia, G., Zein, G.E.: Hardware simulator design for MIMO propagation channel on shipboard at 2.2 GHz. Wireless Pers. Commun. 71(4), 2535–2561 (2013)

    Article  Google Scholar 

  5. Joshi, G., Prasad, P.R., Singh, A.: FPGA implementation of channel emulator for testing of wireless air interface using VHDL. In: Proceedings of RTEICT16, Bangalore, India, May 2016

    Google Scholar 

  6. Jiang, K., Chen, X., Zhu, Q., Chen, L., Xu, D., Chen, B.: A novel simulation model for nonstationary rice fading channels. Wireless Commun. Mobile Comput. 2018(1) (2018)

    Google Scholar 

  7. Patzold, M., Rafiq, G.: Performance evaluation of sum-of-cisoids Rice/Rayleigh fading channel simulators with respect to the bit error probability. Radio Sci. 49(11), 997–1007 (2014)

    Article  Google Scholar 

  8. Alimohammad, A., Fard, S.F., Cockburn, B.F., Schlegel, C.: An improved SOS-based fading channel emulator. In: Proceedings of VTC07, Baltimore, MD, USA, October 2007

    Google Scholar 

  9. Huang, D., Zeng, D.Z., Long, T., Yu, J.Y.: Design of a correlated Lognormal distributed sequence generator based on Virtex-IV series FPGA. In: Proceedings of ICCASM10, Taiyuan, Shanxi, China, October 2010

    Google Scholar 

  10. Merwaday, A., Rupasinghe, N., Gvenc, \({\rm {\dot{I}}}\)., Saad, W., Yuksel, M.: USRP-based indoor channel sounding for D2D and multi-hop communications. In: Proceedings of WAMICON14, Tampa, FL, USA, June 2014

    Google Scholar 

  11. Chen, B., Zhong, Z., Ai, B.: Stationarity intervals of time-variant channel in high speed railway scenario. China Commun. 9(8), 64–70 (2012)

    Google Scholar 

  12. Eldowek, B.M., El-atty, S.M.A., El-Rabaie, E.M., El-Samie, F.E.A.: 3D non-stationary vehicle-to-vehicle MIMO channel model for 5G millimeter-wave communications. Digit. Signal Prog. 95, 102580 (2019)

    Article  Google Scholar 

  13. Gutibaierrez-Mena, J.T., Gutierrez, C.A., Luna-Rivera, J.M., Campos-Delgado, D.U., Vzquez-Castillo, J.: A novel geometrical model for non-stationary MIMO vehicle-to-vehicle channels. IETE Tech. Rev. 36(1), 1–12 (2017)

    Google Scholar 

  14. Li, W., Chen, X., Zhu, Q., Zhong, W., Xu, D., Bai, F.: A novel segment-based model for non-stationary vehicle-to-vehicle channels with velocity variations. IEEE Access 7, 133442–133451 (2019)

    Article  Google Scholar 

  15. Zhu, Q., Wang, Y., Jiang, K., Chen, X., Zhong, W., Ahmed, N.: 3D non-stationary geometry-based multi-input multi-output channel model for UAV-ground communication systems. IET Microwaves Antennas Propag. 13(8), 1104–1112 (2019)

    Article  Google Scholar 

  16. Ispas, A., Ascheid, G., Schneider, C., Thoma, R.: Analysis of local quasi-stationarity regions in an urban macrocell scenario. In: Proceedings of VTC10, Taipei, Taiwan, China, May 2010

    Google Scholar 

  17. Zhu, Q., Li, H., Fu, Y., Wang, C.-X., Tan, Y., et al.: A novel 3D non-stationary wireless MIMO channel simulator and hardware emulator. IEEE Trans. Commun. 66(9), 3865–3878 (2018)

    Article  Google Scholar 

  18. Dhaka, A., Chauhan, S., Bhaskar, V.: Analysis and simulation of second-order statistics with modified characteristic function parameters in a multipath fading environment. Wireless Pers. Commun. 100(3), 851–862 (2018)

    Article  Google Scholar 

  19. Ghazal, A., Wang, C., Ai, B., Yuan, D., Haas, H.: A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 16(2), 885–897 (2015)

    Google Scholar 

  20. Zhu, Q., Liu, X., Li, N., Chen, X.: An improved sum-of-sinusoids channel simulator based on Brownian motion. In: Proceedings of ISAP 2014, Kaohsiung, Taiwan, December 2014

    Google Scholar 

  21. Chen, Z., Wang, Q., Wu, D.O., Fan, P.: Two-dimensional evolutionary spectrum approach to nonstationary fading channel modeling. IEEE Trans. Veh. Technol. 65(3), 1083–1097 (2016)

    Article  Google Scholar 

  22. Ghiaasi, G., Ashury, M., Vlastaras, D., Hofer, M., Xu, Z., Zemen, T.: Real-time vehicular channel emulator for future conformance tests of wireless ITS modems. In: Proceedings of EuCAP16, Davos, Switzerland, April 2015

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Scientific Instrument and Equipment Development Project under Grant No. 61827801, in part by Aeronautical Science Foundation of China, No. 201901052001, and in part by the Fundamental Research Funds for the Central Universities, No. NS2020026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuming Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Mao, K., Yang, Y., Ning, B., Zhu, Q. (2021). Implementation of Non-stationary Channel Emulator Based on USRP. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66785-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66784-9

  • Online ISBN: 978-3-030-66785-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics