Skip to main content

Synthesis and Application of Nanomaterials for Biomedical Anticancer Therapy

  • Chapter
  • First Online:
Bio-manufactured Nanomaterials

Abstract

Nanomaterials contribution in biomedical applications is the most appreciable research in recent years. Prominent biological characteristics and their applications are the main reason for these research developments. Many medical researches, especially anticancer drug delivery system, drug formulation, diagnosis devices are mainly focusing the nanomaterials. Cancer is the one of the deadliest diseases in the world. Biomaterials are the basic remedies for the cancer therapy, but advanced biomaterials in the nano-form made significant progress than normal biomaterials. In past few years, many organic and inorganic nanomaterials have developed for the cancer diagnostics and therapeutics. These nanomaterials are considered to be good carriers for drug molecules. In this chapter, we first provide a brief description about the production of the various nanomaterials like gold, platinum, silver, titanium oxide, iron oxide silica, polymeric nanoparticles. And also, we discussed the key properties of nanomaterials, such as size, surface properties, and cancer targeting. The major objective of this discussion is to give the better understanding about the role of nanomaterials in the cancer therapy. Nanomaterials in the cancer therapy have emphasis role in drug delivery process with various drug materials. Cancer cells imaging with the nanomaterials is another emerging field in cancer therapy. Various types of diagnostic techniques are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamse, H., & Hamblin, M. R. (2016). New photosensitizers for photodynamic therapy. The Biochemical Journal, 473, 347–364.

    Article  CAS  Google Scholar 

  • Abunahla, H., Mohammad, B., Alazzam, A., Jaoude, M. A., Al-Qutayri, M., Abdul Hadi, S., & Al-Sarawi, S. F. (2019). MOMSense: Metal-oxide-metal elementary glucose sensor. Scientific Reports, 9(1), 5524.

    Article  CAS  Google Scholar 

  • Ajima, K., Yudasaka, M., Murakami, T., Maigne, A., Shiba, K., & Iijima, S. (2005). Carbon nanohorns as anticancer drug carriers. Molecular Pharmacology, 2, 475–480.

    Article  CAS  Google Scholar 

  • Amulyavichus, A., Daugvila, A., Davidonis, R., & Sipavichus, C. (1998). Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Metallov i Metallovedenie, 85, 111–117.

    Google Scholar 

  • Arap, W. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279, 377–380.

    Article  CAS  Google Scholar 

  • Ashkarran, A. A. (2012). Synthesis and characterization of gold nanoparticles via submerged arc discharge based on a seed-mediated approach. Journal of Theoretical and Applied Physics, 6(14), 1–6.

    Google Scholar 

  • Baetke, S. C., Lammers, T., & Kiessling, F. (2015). Applications of nanoparticles for diagnosis and therapy of cancer. The British Journal of Radiology, 88(1054), 20150207.

    Article  CAS  Google Scholar 

  • Banchereau, J., & Steinman, R. M. (1998). Dendritic cells and the control of immunology. Nature, 392, 245–252.

    Article  CAS  Google Scholar 

  • Bang, J. H., & Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced Materials, 22(10), 1039–1059.

    Article  CAS  Google Scholar 

  • Behlke, M. A. (2008). Chemical modification of siRNAs for in vivo use. Oligonucleotides, 18(4), 305–320.

    Article  CAS  Google Scholar 

  • Behzadi, A. H., Farooq, Z., Newhouse, J. H., & Prince, M. R. (2018). MRI and CT contrast media extravasation. Medcine, 97, e0055.

    Article  Google Scholar 

  • Bello, L. (2001). Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery, 49, 380–389.

    CAS  Google Scholar 

  • Benne, N., van Duijn, J., Kuiper, J., Jiskoot, W., & Slutter, B. (2016). Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. Journal of Controlled Release, 234, 124–134.

    Article  CAS  Google Scholar 

  • Beydoun, D., Amal, R., & Low, G. (1999). Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1, 439.

    Article  CAS  Google Scholar 

  • Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 10, 975.

    Article  CAS  Google Scholar 

  • Bretin, L., Pinon, A., Bouramtane, S., Ouk, C., Richard, L., Perrin, M., Chaunavel, A., & Carrion, C. (2019). Photodynamic therapy activity of new human colorectal cancer. Cancers, 11, 1474.

    Article  CAS  Google Scholar 

  • Brown, H. C., & Brown, C. A. (1962). New, highly active metal catalysts for the hydrolysis of borohydride. Journal of the American Chemical Society, 84, 1493–1494.

    Article  CAS  Google Scholar 

  • Burke, B. P., Cawthorne, C., & Archibald, S. J. (2017). Multimodal nanoparticle imaging agents: Design and applications. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 375(2107), 20170261.

    Article  CAS  Google Scholar 

  • Buss, J. L., Torti, F. M., & Torti, S. V. (2003). The role of iron chelation in cancer therapy. Current Medicinal Chemistry, 10, 1021–1034.

    Article  CAS  Google Scholar 

  • Bystrom, L. M., Guzman, M. L., & Rivella, S. (2014). Iron and reactive oxygen species: Friends or foes of cancer cells? Antioxidants and Redox Signaling, 20(12), 1917–1924.

    Article  CAS  Google Scholar 

  • Chabra, V., Pillai, V., Mishra, B. K., Morrone, A., & Shah, D. O. (1995). Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO2 particles. Langmuir, 11, 3307.

    Article  Google Scholar 

  • Chakravarty, R., Hong, H., & Cai, W. (2015). Image-guided drug delivery with single-photon emission computed tomography: A review of literature. Current Drug Targets, 16, 592–609.

    Article  CAS  Google Scholar 

  • Chandra, P., Singh, J., Singh, A., Srivastava, A., Goyal, R. N., & Shim, Y. B. (2013). Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. Journal of Nanoparticles, 2013(12), 535901.

    Google Scholar 

  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107, 2891–2959.

    Article  CAS  Google Scholar 

  • Cheng, Y., Xu, Z., Ma, M., & Xu, T. (2008). Dendrimers as drug carriers: Applications in different routes of drug administration. Journal of Pharmaceutical Sciences, 97, 123–143.

    Article  CAS  Google Scholar 

  • Chiu, Y., & Rana, T. M. (2003). siRNA function in RNAi: A chemical modification analysis. RNA, 9, 1034–1048.

    Article  CAS  Google Scholar 

  • Choi, S. J., Lee, J. K., Jeong, J., & Choy, J. H. (2013). Toxicity evaluation of inorganic nanoparticles: Considerations and challenges. Molecular & Cellular Toxicology, 9, 205–210.

    Article  CAS  Google Scholar 

  • Choi, W., Park, E. Y., Jeon, S., & Kim, C. (2018). Clinical photoacoustic imaging platforms. Biomedical Engineering Letters, 8, 139–155.

    Article  Google Scholar 

  • Christian, S. (2003). Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. The Journal of Cell Biology, 163, 871–878.

    Article  CAS  Google Scholar 

  • Culver, K. S., Shin, Y. J., Rotz, M. W., Meade, T. J., Hersam, M. C., & Odom, T. W. (2016). Shape-dependent relaxivity of nanoparticle-based T1 magnetic resonance imaging contrast agents. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 120(38), 22103–22109.

    Article  CAS  Google Scholar 

  • Deepak, V., Umamaheshwaran, P. S., Guhan, K., Nanthini, R. A., Krithiga, B., Jaithoon, N. M., & Gurunathan, S. (2011). Synthesis of gold and silver nanoparticles using purified URAK. Colloid Surface B, 86, 353–358.

    Article  CAS  Google Scholar 

  • Desai, N. (2012). Challenges in development of nanoparticle-based therapeutics. The AAPS Journal, 14(2), 282–295.

    Article  CAS  Google Scholar 

  • Dimov, N., Kastner, E., Hussain, M., Perrie, Y., & Szita, N. (2017). Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Scientific Reports, 7, 12045.

    Article  CAS  Google Scholar 

  • Dong, Y. C., Hajfathalian, M., Maidment, P. S. N., Hsu, J. C., Naha, P. C., Si-Mohamed, S., Breuilly, M., Kim, J., Chhour, P., & Douek, P. (2019). Effect of gold nanoparticle size on their properties as contrast agents for computed tomography. Scientific Reports, 9, 1–13.

    Article  Google Scholar 

  • Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44, 5778–5792.

    Article  CAS  Google Scholar 

  • Duan, X., He, C., Kron, S. J., & Lin, W. (2016). Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 8, 776–791.

    Article  CAS  Google Scholar 

  • Elsupikhe, R. F., Shameli, K., Ahmad, M. B., Ibrahim, N. A., & Zainudin, N. (2015). Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Research Letters, 10, 302.

    Article  CAS  Google Scholar 

  • Emanet Ciofani, M., Åžen, Ö., & Culha, M. (2020). Hexagonal boron nitride nanoparticles for prostate cancer treatment. ACS Applied Nano Materials, 3(3), 2364–2372.

    Article  CAS  Google Scholar 

  • Estelrich, J., & Antònia Busquets, M. (2018). Iron oxide nanoparticles in photothermal therapy. Molecules, 23, 1567.

    Article  CAS  Google Scholar 

  • Evans, E. R., Bugga, P., Asthana, V., & Drezek, R. (2018). Metallic nanoparticles for cancer immunotherapy. Materials Today, 21, 673–685.

    Article  CAS  Google Scholar 

  • Fang, J. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63, 136–151.

    Article  CAS  Google Scholar 

  • Farrow, B., Evers, B. M., Iwamura, T., Murillo, C., O’Connor, K. L., & Rychahou, P. (2003). Inhibition of pancreatic cancer cell growth and induction of apoptosis with novel therapies directed against protein kinase A. Surgery, 134(2), 197–205.

    Article  Google Scholar 

  • Felber, A. E., Dufresne, M. H., & Leroux, J. C. (2012). pH-sensitive vehicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Advanced Drug Delivery Reviews, 64, 979–992.

    Article  CAS  Google Scholar 

  • Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806.

    Article  CAS  Google Scholar 

  • Fisusi, F. A., & Akala, E. O. (2019). Drug combinations in breast cancer therapy. Pharmaceutical Nanotechnology, 7, 3–23.

    Article  CAS  Google Scholar 

  • Foy, S. P., & Labhasetwar, V. (2011). Oh the irony: Iron as a cancer cause or cure? Biomaterials, 32, 9155–9158.

    Article  CAS  Google Scholar 

  • Frappier, V., Duran, M., & Keating, A. E. (2018). PixelDB: Protein–peptide complexes annotated with structural conservation of the peptide binding mode. Protein Science, 27(1), 276–285.

    Article  CAS  Google Scholar 

  • Fujiwara, R., Luo, Y., & Sasaki, T. (2015). Cancer therapeutic effects of titanium dioxide nanoparticles are associated with oxidative stress and cytokine induction. Pathobiology, 82, 243–251.

    Article  CAS  Google Scholar 

  • Gallardo-Williams, M. T., Chapin, R. E., King, P. E., Moser, G. J., Goldsworthy, T. L., Morrison, J. P., & Maronpot, R. R. (2004). Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice. Toxicologic Pathology, 32(1), 73–78.

    Article  CAS  Google Scholar 

  • Ge, Y., Zhang, Y., Xia, J., et al. (2009). Effect of surface charge and agglomerate degree of magnetic iron oxide nanoparticles on KB cellular uptake in vitro. Colloids and Surfaces. B, Biointerfaces, 73(2), 294–301.

    Article  CAS  Google Scholar 

  • Ghafouri-Fard, S., & Ghafouri-Fard, S. (2012). siRNA and cancer immunotherapy. Immunotherapy, 4(9), 907–917.

    Article  CAS  Google Scholar 

  • Gopinath, P., Gogoi, S. K., Chattopadhyay, A., & Ghosh, S. S. (2008). Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology, 19, 075104.

    Article  CAS  Google Scholar 

  • Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound imaging technologies for breast cancer detection and management: A review. Ultrasound in Medicine & Biology, 44, 37–70.

    Article  Google Scholar 

  • Gurav, A. S., Kodas, T. T., Wang, L. M., Kauppinen, E. I., & Joutsensaari, J. (1994). Generation of nanometer-size fullerene particles via vapor condensation. Chemical Physics Letters, 218, 304–308.

    Article  CAS  Google Scholar 

  • Gurunathan, S., Kang, M. H., Qasim, M., & Kim, J. H. (2018). Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. International Journal of Molecular Sciences, 19, 1–37.

    Article  Google Scholar 

  • Harada, A., Ono, M., & Yuba, E. (2013). Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomaterials Science, 1, 65–73.

    Article  CAS  Google Scholar 

  • Harris, J. M., & Chess, R. B. (2003). Efect of pegylation on pharmaceuticals. Nature Reviews. Drug Discovery, 2(3), 214–221.

    Article  CAS  Google Scholar 

  • He, C., & Chow, J. C. (2016). Gold nanoparticle DNA damage in radiotherapy: A Monte Carlo study. AIMS Bioengineering, 3, 352.

    Article  CAS  Google Scholar 

  • Hemond, C. C., & Bakshi, R. (2018). Magnetic resonance imaging in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine, 8, 1–21.

    Article  CAS  Google Scholar 

  • Hillen, F., & Griffioen, A. W. (2007). Tumour vascularization: Sprouting angiogenesis and beyond. Cancer Metastasis Reviews, 26(3–4), 489–502.

    Article  Google Scholar 

  • Hirschberg, H., & Madsen, S. J. (2019). Cell mediated photothermal therapy of brain tumors. Journal of Neuroimmune Pharmacology, 12, 99–106.

    Article  Google Scholar 

  • Holgate, S. T. (2010). Exposure, uptake, distribution and toxicity of nanomaterials in humans. Journal of Biomedical Nanotechnology, 6(1), 1–19.

    Article  CAS  Google Scholar 

  • Huang, H., Zhang, W. K., Li, M. C., Gan, Y. P., Ma, C. A., & Zhang, X. B. (2004). Electrochemical production of Sn-filled carbon nanotubes in molten salts. Transactions of Nonferrous Metals Society of China, 14, 441–445.

    CAS  Google Scholar 

  • Huynh, E., & Zheng, G. (2015). Cancer nanomedicine: Addressing the dark side of the enhanced permeability and retention effect. Nanomedicine (London, England), 10, 1993–1995.

    Article  CAS  Google Scholar 

  • Jain, K., Gupta, U., & Jain, N. K. (2014). Dendronized nanoconjugates of lysine and folate for treatment of cancer. European Journal of Pharmaceutics and Biopharmaceutics, 87, 500–509.

    Article  CAS  Google Scholar 

  • Jørgensen, J. T., Norregaard, K., Tian, P., Bendix, P. M., Kjaer, A., & Oddershede, L. B. (2016). Single particle and PET-based platform for identifying optimal plasmonic nano-heaters for photothermal cancer therapy. Scientific Reports, 2(3), 201–210.

    Google Scholar 

  • Kamaly, N. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41, 2971–3010.

    Article  CAS  Google Scholar 

  • Kerbel, R. S., & Kamen, B. A. (2004). The anti-angiogenic basis of metronomic chemotherapy. Nature Reviews. Cancer, 4(6), 423–436.

    Article  CAS  Google Scholar 

  • Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science, 39, 268–307.

    Article  CAS  Google Scholar 

  • Kesharwani, P., Xie, L., Banerjee, S., Mao, G., Padhye, S., Sarkar, F. H., & Iyer, A. K. (2015). Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3, 4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids and Surfaces B: Biointerfaces, 136, 413–423.

    Article  CAS  Google Scholar 

  • Kim, J., Lee, N., & Hyeon, T. (2017). Recent development of nanoparticles for molecular imaging. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 375(2107), 20170022.

    Article  CAS  Google Scholar 

  • Klabunde, K. J. (2001). Nanoscale materials in chemistry. New York, NY: Wiley-Interscience.

    Book  Google Scholar 

  • Klippstein, R., & Pozo, D. (2010). Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine: Nanotechnology, Biology and Medicine, 6(4), 523–529.

    Article  CAS  Google Scholar 

  • Kobayashi, H. (2013). Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 4, 81–89.

    Article  CAS  Google Scholar 

  • Kodiha, M., Wang, Y. M., Hutter, E., Maysinger, D., & Stochaj, U. (2015). Off to the organelles killing cancer cells with targeted gold nanoparticles. Theranostics, 5(4), 357–370.

    Article  CAS  Google Scholar 

  • Kong, F. Y., Zhang, J. W., Li, R. F., Wang, Z. X., Wang, W. J., & Wang, W. (2017). Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 22, 1445.

    Article  CAS  Google Scholar 

  • Kruis, F. E., Fissan, H., & Rellinghaus, B. (2000). Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles. Materials Science and Engineering B, 69, 329–334.

    Article  Google Scholar 

  • Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., & Zitka, O. (2017). Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials, 7, 243.

    Article  CAS  Google Scholar 

  • Kulthe, S. S., Choudhari, Y. M., Inamdar, N. N., & Mourya, V. (2012). Polymeric micelles: Authoritative aspects for drug delivery. Designed Monomers and Polymers, 15, 465–521.

    Article  CAS  Google Scholar 

  • Kumar, T. P., Ramesh, R., Lin, Y. Y., & Fey, G. T. K. (2004). Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochemistry Communications, 6, 520–525.

    Article  CAS  Google Scholar 

  • Kwiatkowski, G., Jähnig, F., Steinhauser, J., Wespi, P., Ernst, M., & Kozerke, S. (2017). Nanometer size silicon particles for hyperpolarized MRI. Scientific Reports, 7, 1–6.

    Article  CAS  Google Scholar 

  • Kyrychenko, A., Pasko, D. A., & Kalugin, O. N. (2017). Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure. Physical Chemistry Chemical Physics, 19(13), 8742–8756.

    Article  CAS  Google Scholar 

  • Lecuyer, T., Teston, E., Ramirez-Garcia, G., Maldiney, T., Viana, B., Seguin, J., Mignet, N., Scherman, D., & Richard, C. (2016). Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics, 6, 2488.

    Article  CAS  Google Scholar 

  • Lee, M. S., Dees, E. C., & Wang, A. Z. (2017). Nanoparticle-delivered chemotherapy: Old drugs in new packages. Oncology, 31, 198–208.

    Google Scholar 

  • Leonenko, Z., Finot, E., & Amrein, M. (2007). Adhesive interaction measured between AFM probe and lung epithelial type II cells. Ultramicroscopy, 107(10–11), 948–953.

    Article  CAS  Google Scholar 

  • Leserman, L. D. (1980). Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature, 288, 602–604.

    Article  CAS  Google Scholar 

  • Li, X., Wang, X., Zhang, J., Hanagata, N., Wang, X., Weng, Q., Ito, A., Bando, Y., & Golberg, D. (2017). Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Communications, 8, 13936.

    Article  CAS  Google Scholar 

  • Limbach, L. K., Li, Y., & Grass, R. N. (2005). Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environmental Science & Technology, 39(23), 9370–9376.

    Article  CAS  Google Scholar 

  • Liu, J., Lécuyer, T., Seguin, J., Mignet, N., Scherman, D., Viana, B., & Richard, C. (2019). Imaging and therapeutic applications of persistent luminescence nanomaterials. Advanced Drug Delivery Reviews, 138, 193–210.

    Article  CAS  Google Scholar 

  • Liu, M. C., Lin, T. S., & Sartorelli, A. C. (1992). Synthesis and antitumor activity of amino derivatives of pyridine-2-carboxaldehyde thiosemicarbazone. Journal of Medicinal Chemistry, 35, 3672–3677.

    Article  CAS  Google Scholar 

  • Liyanage, P. Y., Hettiarachchi, S. D., Zhou, Y., Ouhtit, A., Seven, E. S., Oztan, C. Y., Celik, E., & Leblanc, R. M. (2019). Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochimica Et Biophysica Acta. Reviews on Cancer, 1871, 419–433.

    Article  CAS  Google Scholar 

  • Longmire, M., Choyke, P. L., & Kobayashi, H. (2008). Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine, 3(5), 703–717.

    Article  CAS  Google Scholar 

  • Ma, J., Pulfer, S., Li, S., Chu, J., Reed, K., & Gallo, J. M. (2001). Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP470. Cancer Research, 61(14), 5491–5498.

    CAS  Google Scholar 

  • Macák, M. (2008). Growth of anodic self-organazed titanium dioxide nanotube layers [Ph.D. thesis]. University Erlangen-Nürnberg-Germany.

    Google Scholar 

  • Madaan, K., Kumar, S., Poonia, N., Lather, V., & Pandita, D. (2014). Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of Pharmacy & Bioallied Sciences, 6, 139.

    Article  Google Scholar 

  • Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41, 189–207.

    Article  CAS  Google Scholar 

  • Manchun, S., Dass, C. R., & Sriamornsak, P. (2012). Targeted therapy for cancer using pH-responsive nanocarrier systems. Life Sciences, 90, 381–387.

    Article  CAS  Google Scholar 

  • Mandal, A., Bisht, R., Rupenthal, I. D., & Mitra, A. K. (2017). Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. Journal of Controlled Release, 248, 96–116.

    Article  CAS  Google Scholar 

  • Mangal, S., Gao, W., Li, T., & Zhou, Q. T. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacologica Sinica, 38, 782–797.

    Article  CAS  Google Scholar 

  • Manikprabhu, D., Cheng, J., Chen, W., Sunkara, A. K., Mane, S. B., Kumar, R., Das, M. N., Hozzein, W., Duan, Y. Q., & Li, W. J. (2016). Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. Journal of Photochemistry and Photobiology A: Chemistry, B158, 202–205.

    Article  CAS  Google Scholar 

  • Marcu, A., Pop, S., Dumitrache, F., Mocanu, M., Niculite, C., Gherghiceanu, M., Lungu, C., Fleaca, C., Ianchis, R., & Barbut, A. (2013). Magnetic iron oxide nanoparticles as drug delivery system in breast cancer. Applied Surface Science, 281, 60–65.

    Article  CAS  Google Scholar 

  • Mateti, S., Wong, C. S., Liu, Z., Yang, W., Li, Y., Li, L. H., & Chen, Y. (2017). Biocompatibility of boron nitride nanosheets. Nanoscale Research Letters, 11(1), 334–342.

    Google Scholar 

  • Matsumura, S., Ajima, K., Yudasaka, M., Iijima, S., & Shiba, K. (2007). Dispersion of cisplatin-loaded carbon nanohorns with a conjugate comprised of an artificial peptide aptamer and polyethylene glycol. Molecular Pharmacology, 4, 723–729.

    Article  CAS  Google Scholar 

  • McNamara, K., & Tofail, S. A. (2015). Nanosystems: The use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Physical Chemistry Chemical Physics, 17, 27981–27995.

    Article  CAS  Google Scholar 

  • McNamara, K., & Tofail, S. A. (2017). Nanoparticles in biomedical applications. Advances in Physics, 2, 54–88.

    CAS  Google Scholar 

  • Meng, F., Cheng, R., Deng, C., & Zhong, Z. (2012). Intracellular drug release nanosystems. Materials Today, 15, 436–442.

    Article  CAS  Google Scholar 

  • Meng, F., Han, N., & Yeo, Y. (2017). Organic nanoparticle systems for spatiotemporal control of multimodal chemotherapy. Expert Opinion on Drug Delivery, 14, 427–446.

    Article  CAS  Google Scholar 

  • Meng, F., Hennink, W. E., & Zhong, Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 30, 2180.

    Article  CAS  Google Scholar 

  • Miao, W., Kim, H., Gujrati, V., Kim, J. Y., Jon, H., Lee, Y., Choi, M., Kim, J., Lee, S., & Lee, D. Y. (2016). Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics, 6, 2367–2379.

    Article  CAS  Google Scholar 

  • Miyata, K., Christie, R. J., & Kataoka, K. (2011). Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 71, 227–234.

    Article  CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53(2), 283–318.

    CAS  Google Scholar 

  • Mokoena, D. R., George, B. P., & Abrahamse, H. (2019). Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy. International Journal of Molecular Sciences, 20, 4771.

    Article  CAS  Google Scholar 

  • Monthioux, M. (2002). Filling single-wall carbon nanotubes. Carbon, 40, 1809–1823.

    Article  CAS  Google Scholar 

  • Mou, Y., Xing, Y., & Ren, H. (2017). The effect of superparamagnetic iron oxide nanoparticle surface charge on antigen cross-presentation. Nanoscale Research Letters, 12(1), 52.

    Article  CAS  Google Scholar 

  • Muthukumar, T., Kumari, S., Sambandam, B., Aravinthan, A., Sastry, T. P., & Kim, J. (2016). Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochemistry, 51, 384–391.

    Article  CAS  Google Scholar 

  • Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular Health and Risk Management, 2(3), 213–219.

    Article  CAS  Google Scholar 

  • Noriega-Luna, B., Godínez, L. A., Rodríguez, F. J., Rodríguez, A., Larrea, G., Sosa-Ferreyra, C., Mercado-Curiel, R., Manríquez, J., & Bustos, E. (2014). Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. Journal of Nanomaterials, 2014, 39.

    Article  CAS  Google Scholar 

  • Orme, M. E., & Chaplain, M. A. J. (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA Journal of Mathematics Applied in Medicine and Biology, 14(3), 189–205.

    Article  CAS  Google Scholar 

  • Park, W., Heo, Y. J., & Han, D. K. (2018). New opportunities for nanoparticles in cancer immunotherapy. Biomaterials Research, 22, 1–10.

    Article  CAS  Google Scholar 

  • Parveen, S., & Sahoo, S. K. (2008). Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting, 16(2), 108–123.

    Article  CAS  Google Scholar 

  • Pasqualini, R. (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Research, 60, 722–727.

    CAS  Google Scholar 

  • Pelaz, B., Charron, G., & Pfeiffer, C. (2013). Interfacing engineered nanoparticles with biological systems: Anticipating adverse nano-bio interactions. Small, 9(9–10), 1573–1584.

    Article  CAS  Google Scholar 

  • Pelt, J., Busatto, S., Ferrari, M., Thompson, E. A., Mody, K., & Wolfram, J. (2018). Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacology & Therapeutics, 191, 43–49.

    Article  CAS  Google Scholar 

  • Peng, Y., Lu, B., Wang, N., Li, L., & Chen, S. (2017). Impacts of interfacial charge transfer on nanoparticle electrocatalytic activity towards oxygen reduction. Physical Chemistry Chemical Physics, 19(14), 9336–9348.

    Article  CAS  Google Scholar 

  • Pittella, F., Zhang, M., & Lee, Y. (2011). Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials, 32(11), 3106–3114.

    Article  CAS  Google Scholar 

  • Pluym, T., Powell, Q., Gurav, A., Ward, T., Kodas, T., & Glicksman, H. (1993). Solid silver particle production by spray pyrolysis. Journal of Aerosol Science, 24, 383–392.

    Article  CAS  Google Scholar 

  • Pratsinis, S. E. (2011). History of manufacture of fine particles in high-temperature aerosol reactors. In D. S. Ensor (Ed.), Aerosol science and technology: History and reviews (1st ed.). Research Triangle Park: RTI International.

    Google Scholar 

  • Press, D. (2018). Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. International Journal of Nanomedicine, 13, 3921.

    Article  Google Scholar 

  • Prusty, K., & Swain, S. K. (2018). Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Materials Science and Engineering, 85, 130–141.

    Article  CAS  Google Scholar 

  • Qi, G. B., Gao, Y. J., Wang, L., & Wang, H. (2018). Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Advanced Materials, 30(22), 1703444.

    Article  CAS  Google Scholar 

  • Qiao, Z. Y., Lin, Y. X., Lai, W. J., Hou, C. Y., Wang, Y., Qiao, S. L., Zhang, D., Fang, Q. J., & Wang, H. A. (2016). General strategy for facile synthesis and in situ screening of self-assembled polymer-peptide nanomaterials. Advanced Materials, 28(9), 1859–1867.

    Article  CAS  Google Scholar 

  • Quintanar-Guerrero, D. (1998). Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Development and Industrial Pharmacy, 24(12), 1113–1128.

    Article  CAS  Google Scholar 

  • Rampersaud, S., Fang, J., & Wei, Z. (2016). The effect of cage shape on nanoparticle-based drug carriers: Anticancer drug release and efficacy via receptor blockade using dextran-coated iron oxide nanocages. Nano Letters, 16(12), 7357–7363.

    Article  CAS  Google Scholar 

  • Rao, V. A., Klein, S. R., Agama, K. K., Toyoda, E., Adachi, N., Pommier, Y., & Shacter, E. B. (2009). The iron chelator Dp44mT causes DNA damage and selective inhibition of topoisomerase IIA in breast cancer. Cells American Association of Cancer Research, 69, 948–957.

    CAS  Google Scholar 

  • Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 9(4), e1449.

    Article  CAS  Google Scholar 

  • Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. (2019). Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 18, 175–196.

    Article  CAS  Google Scholar 

  • Rosado-De-Castro, P. H., Morales, M. D. P., Pimentel-Coelho, P. M., Mendez-Otero, R., & Herranz, F. (2018). Development and application of nanoparticles in biomedical imaging. Contrast Media & Molecular Imaging, 2018, 1403826.

    Article  Google Scholar 

  • Saleh, T., & Shojaosadati, S. A. (2016). Multifunctional nanoparticles for cancer immunotherapy. Human Vaccines and Immunotherapeutics, 12, 1863–1875.

    Google Scholar 

  • Santos, B. S., & Ferreira, M. J. (2019). Positron emission tomography in ischemic heart disease. Revista Portuguesa de Cardiologia, 38, 599–608.

    Article  Google Scholar 

  • Sapsford, K. E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., Stewart, M. H., & Medintz, I. L. (2013). Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chemical Reviews, 113, 1904–2074.

    Article  CAS  Google Scholar 

  • Sau, S., Alsaab, H. O., Bhise, K., Alzhrani, R., Nabil, G., & Iyer, A. K. (2018). Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. Journal of Controlled Release, 274, 24–34.

    Article  CAS  Google Scholar 

  • Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. Journal of the American Chemical Society, 75(1), 215–219.

    Article  CAS  Google Scholar 

  • Schwarz, D. S., Hutvágner, G., Haley, B., & Zamore, P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10(3), 537–548.

    Article  CAS  Google Scholar 

  • Scorei, I., & Popa, R. (2012). Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anti-Cancer Agents in Medicinal Chemistry, 10(4), 346–351.

    Article  Google Scholar 

  • Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286.

    Article  CAS  Google Scholar 

  • Shah, M., Badwaik, V., Kherde, Y., Waghwani, H. K., Modi, T., Aguilar, Z. P., Rodgers, H., Hamilton, W., Marutharaj, T., Webb, C., Lawrenz, M. B., & Dakshinamurthy, R. (2014). Gold nanoparticles: Various methods of synthesis and antibacterial applications. Frontiers in Bioscience, 1(19), 1320–1344.

    Article  Google Scholar 

  • Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Gharayebi, Y., & Sedaghat, S. (2010). Synthesis of silver/montmorillonite nanocomposites using γ-irradiation. International Journal of Nanomedicine, 5, 1067–1077.

    Article  CAS  Google Scholar 

  • Siddique, S., & Chow, J. C. L. (2020). Application of nanomaterials in biomedical imaging and cancer therapy. Nanomaterials, 10, 1700.

    Article  CAS  Google Scholar 

  • Silva, A. L., Soema, P. C., Slutter, B., Ossendorp, F., & Jiskoot, W. (2016). PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Human Vaccines & Immunotherapeutics, 12(4), 1056–1069.

    Article  CAS  Google Scholar 

  • Silva, G. A. (2004). Introduction to nanotechnology and its applications to medicine. Surgical Neurology, 61(3), 216–220.

    Article  Google Scholar 

  • Simón, M., Norregaard, K., Jørgensen, J. T., Oddershede, L. B., & Kjaer, A. (2019). Fractionated photothermal therapy in a murine tumor model: Comparison with single dose. International Journal of Nanomedicine, 14, 5369–5379.

    Article  Google Scholar 

  • Singh, P., Pandit, S., Mokkapati, V. R. S. S., Garg, A., Ravikumar, V., & Mijakovic, I. (2018). Gold nanoparticles in diagnostics and therapeutics for human cancer. International Journal of Molecular Sciences, 19, 1979.

    Article  CAS  Google Scholar 

  • Siregar, S., Oktamuliani, S., & Saijo, Y. A. (2018). Theoretical model of laser heating carbon nanotubes. Nanomaterials, 8, 580.

    Article  CAS  Google Scholar 

  • Sitharaman, B., Kissell, K. R., Hartman, K. B., Tran, L. A., Baikalov, A., Rusakova, I., Sun, Y., Khant, H. A., Ludtke, S. J., Chiu, W., Laus, S., Toth, E., Helm, L., Merbach, A. E., & Wilson, L. J. (2005). Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chemical Communications, 3915–3917.

    Google Scholar 

  • Steinberg, I., Huland, D. M., Vermesh, O., Frostig, H. E., Tummers, W. S., & Gambhir, S. S. (2019). Photoacoustic clinical imaging. Photoacoustics, 8(14), 77–98.

    Article  Google Scholar 

  • Tang, J., Li, L., Howard, C. B., Mahler, S. M., Huang, L., & Xu, Z. P. (2015). Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 3(33), 6805–6812.

    Article  CAS  Google Scholar 

  • Tao, A., Sinsermsuksakul, P., & Yang, P. (2006). Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie, International Edition, 45, 4597–4601.

    Article  CAS  Google Scholar 

  • Terman, A., & Kurz, T. (2012). Lysosomal iron, iron chelation, and cell death. Anitoxidants and Redox Signaling, 18(8), 888–898.

    Article  CAS  Google Scholar 

  • Tian, Y., Guo, Z., Zhang, T., Lin, H., Li, Z., Chen, J., Deng, S., & Liu, F. (2019). Inorganic boron-based nanostructures: Synthesis, optoelectronic properties, and prospective applications. Nanomaterials, 9(4), 538.

    Article  CAS  Google Scholar 

  • Tien, D. C., Liao, C. Y., Huang, J. C., Tseng, K. H., Lung, J. K., Tsung, T. T., Kao, W. S., Tsai, T. H., Cheng, T. W., & Yu, B. S. (2008). Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Reviews on Advanced Materials Science, 18, 750–756.

    Google Scholar 

  • Tombácz, E., Turcu, R., Socoliuc, V., & Vékás, L. (2015). Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magneto responsive nanosystems. Biochemical and Biophysical Research Communications, 468, 442–453.

    Article  CAS  Google Scholar 

  • Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63, 131–135.

    Article  CAS  Google Scholar 

  • Tran, S., DeGiovanni, P. J., Piel, B., & Rai, P. (2017). Cancer nanomedicine: A review of recent success in drug delivery. Clinical and Translational Medicine, 6(1), 44.

    Article  Google Scholar 

  • Tripathy, S., & Das, M. (2013). Dendrimers and their applications as novel drug delivery carriers. Journal of Applied Pharmaceutical Science, 3, 142–149.

    Google Scholar 

  • Vansant, E. F., Voort, P. V. D., & Vrancken, K. C. (1995). Characterization and chemical modification of the silica surface. New York, NY: Elsevier Science.

    Google Scholar 

  • Veiseh, O., Gunn, J. W., & Zhang, M. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 62(3), 284–304.

    Article  CAS  Google Scholar 

  • Ventola, C. L. (2017). Progress in nanomedicine: Approved and investigational nanodrugs. Pharmacy and Therapeutics, 42(12), 742–755.

    Google Scholar 

  • Vines, J. B., Yoon, J. H., Ryu, N. E., Lim, D. J., & Park, H. (2019). Gold nanoparticles for photothermal cancer therapy. Frontiers in Chemistry, 5(7), 167.

    Article  CAS  Google Scholar 

  • Wakaskar, R. R. (2017). Polymeric micelles for drug delivery. The International Journal of Drug Development and Research, 9, 1–2.

    Google Scholar 

  • Wang, B., Zhang, W., Zhou, X., Liu, M., Hou, X., Cheng, Z., & Chen, D. (2019). Development of dual-targeted nano-dandelion based on an oligomeric hyaluronic acid polymer targeting tumor-associated macrophages for combination therapy of non-small cell lung cancer. Drug Delivery, 26, 1265–1279.

    Article  CAS  Google Scholar 

  • Wang, X. (2014). The development of site-specific drug delivery nanocarriers based on receptor mediation. Journal of Controlled Release, 193, 139–153.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, Y., Wei, F., & Duan, Y. (2017). Optical imaging paves the way for autophagy research. Trends in Biotechnology, 35, 1181–1193.

    Article  CAS  Google Scholar 

  • Wang, Y., Lin, Y. X., Qiao, Z. Y., An, H. W., Qiao, S. L., Wang, L., Rajapaksha, R. P. Y. J., & Wang, H. (2015). Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Advanced Materials, 27(16), 2627–2634.

    Article  CAS  Google Scholar 

  • Wang, Y., Strohm, E. M., Sun, Y., Wang, Z., Zheng, Y., Wang, Z., & Kolios, M. C. (2016). Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods. Biomedical Optics Express, 7, 4125.

    Article  CAS  Google Scholar 

  • Watts, J. K., Deleavey, G. F., & Damha, M. J. (2008). Chemically modified siRNA: Tools and applications. Drug Discovery Today, 13(19–20), 842–855.

    Article  CAS  Google Scholar 

  • Wen, R., Umeano, A. C., Kou, Y., Xu, J., & Farooqi, A. A. (2019). Nanoparticle systems for cancer vaccine. Nanomedicine, 8, 627–648.

    Article  CAS  Google Scholar 

  • Wu, D., Gao, Y., Qi, Y., Chen, L., Ma, Y., & Li, Y. (2014). Peptide-based cancer therapy: Opportunity and challenge. Cancer Letters, 351(1), 13–22.

    Article  CAS  Google Scholar 

  • Wu, W., He, Q. G., & Jiang, C. Z. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397–415.

    Article  CAS  Google Scholar 

  • Xiao, Y., Shlyahovsky, B., Popov, I., Pavlov, V., & Willner, I. (2005). Shape and color of Au nanoparticles follow biocatalytic processes. Langmuir, 21(13), 5659–5662.

    Article  CAS  Google Scholar 

  • Xu, C., & Wang, J. (2015). Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 10(1), 1–12.

    Article  Google Scholar 

  • Xu, S., Zhang, R., Zhao, W., Zhu, Y., Wei, W., Liu, X., Luo, J. (2017). Self-assembled polymeric nanoparticles film stabilizing gold nanoparticles as a versatile platform for ultrasensitive detection of carcino-embryonic antigen. Biosensors and Bioelectronics, 92, 570–576.

    Google Scholar 

  • Xu, W., Ling, P., & Zhang, T. (2013). Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of Drug Delivery, 2013, 340315.

    Article  CAS  Google Scholar 

  • Yan, J., He, W., Yan, S., Niu, F., Liu, T., Ma, B., Shao, Y., Yan, Y., Yang, G., Lu, W., Du, Y., Lei, B., & Ma, P. X. (2017). Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano, 12(2), 2017–2026.

    Article  CAS  Google Scholar 

  • Yang, Z., Song, J., Dai, Y., Chen, J., Wang, F., Lin, L., Liu, Y., Zhang, F., Yu, G., & Zhou, Z. (2017). Theranostics self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics, 7(8), 2177–2185.

    Article  CAS  Google Scholar 

  • Yoncheva, K., & Momekov, G. (2011). Antiangiogenic anticancer strategy based on nanoparticulate systems. Expert Opinion on Drug Delivery, 8(8), 1041–1056.

    Article  CAS  Google Scholar 

  • Yousaf, T., Dervenoulas, G., & Politis, M. (2018). Advances in MRI methodology. International Review of Neurobiology, 141, 31–76.

    Article  CAS  Google Scholar 

  • Yu, Z., Zhou, P., Pan, W., Li, N., & Tang, B. (2018). A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 9, 1–9.

    Article  CAS  Google Scholar 

  • Yuan, H., Wilks, M. Q., Maschmeyer, R., Normandin, M. D., Josephson, L., & Fakhri, G. E. (2020). Original research a radio-nano-platform for T1/T2 dual-mode PET-MR imaging. International Journal of Nanomedicine, 15, 1253.

    Article  Google Scholar 

  • Zhang, A., Pan, S., Zhang, Y., Chang, J., Cheng, J., Huang, Z., Li, T., Zhang, C., De La Fuentea, J. M., & Zhang, Q. (2019). Carbon-gold hybrid nanoprobes for real-time imaging, photothermal/photodynamic and nanozyme oxidative therapy. Theranostics, 9, 3443–3458.

    Article  CAS  Google Scholar 

  • Zhang, C., Ni, D., Liu, Y., Yao, H., Bu, W., & Shi, J. (2017). Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy. Nature Nanotechnology, 12(4), 378–386.

    Article  CAS  Google Scholar 

  • Zhang, L., Gu, F., Chan, J., Wang, A., Langer, R., & Farokhzad, O. (2008). Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology and Therapeutics, 83, 761–769.

    Article  CAS  Google Scholar 

  • Zhang, X., Lin, Y., & Gillies, R. J. (2010). Tumor pH and its measurement. Journal of Nuclear Medicine, 51, 1167–1170.

    Article  CAS  Google Scholar 

  • Zhu, J., & Shi, X. (2013). Dendrimer-based nanodevices for targeted drug delivery applications. Journal of Materials Chemistry B, 1, 4199–4211.

    Article  CAS  Google Scholar 

  • Zylberberg, C., & Matosevic, S. (2016). Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 23, 3319–3329.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sugumari Vallinayagam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vallinayagam, S., Rajendran, K. (2021). Synthesis and Application of Nanomaterials for Biomedical Anticancer Therapy. In: Pal, K. (eds) Bio-manufactured Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-030-67223-2_16

Download citation

Publish with us

Policies and ethics